Suppr超能文献

通过贝叶斯网络对实验室检测结果轨迹进行建模来估计疾病发病时间。

Estimating Disease Onset Time by Modeling Lab Result Trajectories via Bayes Networks.

作者信息

Oh Wonsuk, Yadav Pranjul, Kumar Vipin, Caraballo Pedro J, Castro M Regina, Steinbach Michael S, Simon Gyorgy J

机构信息

Institute for Health Informatics, University of Minnesota.

Department of Computer Science and Engineering, University of Minnesota.

出版信息

Proc (IEEE Int Conf Healthc Inform). 2017 Aug;2017:374-379. doi: 10.1109/ICHI.2017.41. Epub 2017 Sep 14.

Abstract

The true onset time of a disease, particularly slow-onset diseases like Type 2 diabetes mellitus (T2DM), is rarely observable in electronic health records (EHRs). However, it is critical for analysis of time to events and for studying sequences of diseases. The aim of this study is to demonstrate a method for estimating the onset time of such diseases from intermittently observable laboratory results in the specific context of T2DM. A retrospective observational study design is used. A cohort of 5,874 non-diabetic patients from a large healthcare system in the Upper Midwest United States was constructed with a three-year follow-up period. The HbA1c level of each patient was collected from earliest and the latest follow-up. We modeled the patients' HbA1c trajectories through Bayesian networks to estimate the onset time of diabetes. Due to non-random censoring and interventions unobservable from EHR data (such as lifestyle changes), naïve modeling of HbA1c through linear regression or modeling time-to-event through proportional hazard model leads to a clinically infeasible model with no or limited ability to predict the onset time of diabetes. Our model is consistent with clinical knowledge and estimated the onset of diabetes with less than a six-month error for almost half the patients for whom the onset time could be clinically ascertained. To our knowledge, this is the first study of modeling long-term HbA1c progression in non-diabetic patients and estimating the onset time of diabetes.

摘要

疾病的真正发病时间,尤其是像2型糖尿病(T2DM)这样的缓慢发病疾病,在电子健康记录(EHRs)中很少能观察到。然而,这对于事件时间分析和疾病序列研究至关重要。本研究的目的是展示一种方法,用于在T2DM的特定背景下,根据间歇性可观察到的实验室结果来估计此类疾病的发病时间。采用回顾性观察研究设计。构建了一个来自美国中西部上半部分一个大型医疗系统的5874名非糖尿病患者的队列,并进行了为期三年的随访。从最早和最新的随访中收集了每位患者的糖化血红蛋白(HbA1c)水平。我们通过贝叶斯网络对患者的HbA1c轨迹进行建模,以估计糖尿病的发病时间。由于存在非随机删失以及从EHR数据中无法观察到的干预措施(如生活方式改变),通过线性回归对HbA1c进行简单建模或通过比例风险模型对事件发生时间进行建模会导致一个临床不可行的模型,该模型预测糖尿病发病时间的能力很弱或没有。我们的模型与临床知识一致,对于几乎一半临床可确定发病时间的患者,估计糖尿病发病时间的误差小于六个月。据我们所知,这是第一项对非糖尿病患者长期HbA1c进展进行建模并估计糖尿病发病时间的研究。

相似文献

7
10

本文引用的文献

1
Machine Learning and Data Mining Methods in Diabetes Research.糖尿病研究中的机器学习与数据挖掘方法
Comput Struct Biotechnol J. 2017 Jan 8;15:104-116. doi: 10.1016/j.csbj.2016.12.005. eCollection 2017.
10
How do we define cure of diabetes?我们如何定义糖尿病的治愈?
Diabetes Care. 2009 Nov;32(11):2133-5. doi: 10.2337/dc09-9036.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验