Parker Michelle L, Boulanger Martin J
Department of Biochemistry & Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, V8W 3P6, Canada.
PLoS One. 2015 May 8;10(5):e0126206. doi: 10.1371/journal.pone.0126206. eCollection 2015.
Apicomplexan parasites are the causative agents of globally prevalent diseases including malaria and toxoplasmosis. These obligate intracellular pathogens have evolved a sophisticated host cell invasion strategy that relies on a parasite-host cell junction anchored by interactions between apical membrane antigens (AMAs) on the parasite surface and rhoptry neck 2 (RON2) proteins discharged from the parasite and embedded in the host cell membrane. Key to formation of the AMA1-RON2 complex is displacement of an extended surface loop on AMA1 called the DII loop. While conformational flexibility of the DII loop is required to expose the mature RON2 binding groove, a definitive role of this substructure has not been elucidated. To establish a role of the DII loop in Toxoplasma gondii AMA1, we engineered a form of the protein where the mobile portion of the loop was replaced with a short Gly-Ser linker (TgAMA1ΔDIIloop). Isothermal titration calorimetry measurements with a panel of RON2 peptides revealed an influential role for the DII loop in governing selectivity. Most notably, an Eimeria tenella RON2 (EtRON2) peptide that showed only weak binding to TgAMA1 bound with high affinity to TgAMA1ΔDIIloop. To define the molecular basis for the differential binding, we determined the crystal structure of TgAMA1ΔDIIloop in complex with the EtRON2 peptide. When analyzed in the context of existing AMA1-RON2 structures, spatially distinct anchor points in the AMA1 groove were identified that, when engaged, appear to provide the necessary traction to outcompete the DII loop. Collectively, these data support a model where the AMA1 DII loop serves as a structural gatekeeper to selectively filter out ligands otherwise capable of binding with high affinity in the AMA1 apical groove. These data also highlight the importance of considering the functional implications of the DII loop in the ongoing development of therapeutic intervention strategies targeting the AMA1-RON2 invasion complex.
顶复门寄生虫是包括疟疾和弓形虫病在内的全球流行疾病的病原体。这些专性细胞内病原体进化出了一种复杂的宿主细胞入侵策略,该策略依赖于一种寄生虫-宿主细胞连接,这种连接由寄生虫表面的顶端膜抗原(AMA)与从寄生虫排出并嵌入宿主细胞膜的棒状体颈部2(RON2)蛋白之间的相互作用所锚定。AMA1-RON2复合物形成的关键是AMA1上一个称为DII环的延伸表面环的位移。虽然DII环的构象灵活性是暴露成熟的RON2结合槽所必需的,但该亚结构的确切作用尚未阐明。为了确定DII环在刚地弓形虫AMA1中的作用,我们设计了一种蛋白质形式,其中环的可移动部分被一个短的甘氨酸-丝氨酸连接子取代(TgAMA1ΔDIIloop)。用一组RON2肽进行的等温滴定量热法测量揭示了DII环在控制选择性方面的重要作用。最值得注意的是,一种与TgAMA1结合较弱的柔嫩艾美耳球虫RON2(EtRON2)肽与TgAMA1ΔDIIloop具有高亲和力结合。为了确定差异结合的分子基础,我们确定了与EtRON2肽复合的TgAMA1ΔDIIloop的晶体结构。在现有AMA1-RON2结构的背景下进行分析时,在AMA1槽中确定了空间上不同的锚定点,当这些点参与时,似乎提供了必要的牵引力以胜过DII环。总体而言,这些数据支持了一个模型,其中AMA1 DII环作为一个结构守门人,选择性地过滤掉否则能够在AMA1顶端槽中以高亲和力结合的配体。这些数据还强调了在针对AMA1-RON2入侵复合物的治疗干预策略的持续开发中考虑DII环功能影响的重要性。