Suppr超能文献

时空杂波滤波极大提高了超快速超声数据的多普勒和 f 超声灵敏度。

Spatiotemporal Clutter Filtering of Ultrafast Ultrasound Data Highly Increases Doppler and fUltrasound Sensitivity.

出版信息

IEEE Trans Med Imaging. 2015 Nov;34(11):2271-85. doi: 10.1109/TMI.2015.2428634. Epub 2015 Apr 30.

Abstract

Ultrafast ultrasonic imaging is a rapidly developing field based on the unfocused transmission of plane or diverging ultrasound waves. This recent approach to ultrasound imaging leads to a large increase in raw ultrasound data available per acquisition. Bigger synchronous ultrasound imaging datasets can be exploited in order to strongly improve the discrimination between tissue and blood motion in the field of Doppler imaging. Here we propose a spatiotemporal singular value decomposition clutter rejection of ultrasonic data acquired at ultrafast frame rate. The singular value decomposition (SVD) takes benefits of the different features of tissue and blood motion in terms of spatiotemporal coherence and strongly outperforms conventional clutter rejection filters based on high pass temporal filtering. Whereas classical clutter filters operate on the temporal dimension only, SVD clutter filtering provides up to a four-dimensional approach (3D in space and 1D in time). We demonstrate the performance of SVD clutter filtering with a flow phantom study that showed an increased performance compared to other classical filters (better contrast to noise ratio with tissue motion between 1 and 10mm/s and axial blood flow as low as 2.6 mm/s). SVD clutter filtering revealed previously undetected blood flows such as microvascular networks or blood flows corrupted by significant tissue or probe motion artifacts. We report in vivo applications including small animal fUltrasound brain imaging (blood flow detection limit of 0.5 mm/s) and several clinical imaging cases, such as neonate brain imaging, liver or kidney Doppler imaging.

摘要

超快速超声成像是一个基于平面或发散超声无焦点传输的快速发展领域。这种最近的超声成像方法导致每一次采集可用的原始超声数据大量增加。更大的同步超声成像数据集可以被利用,以便在多普勒成像领域中大大提高组织和血流运动的区分能力。在这里,我们提出了一种基于超快帧率采集的超声数据的时频奇异值分解去噪方法。奇异值分解(SVD)利用了组织和血流运动在时空相干性方面的不同特征,性能明显优于基于高通时域滤波的传统去噪滤波器。而传统的去噪滤波器仅在时间维度上工作,SVD 去噪滤波器则提供了多达四维的方法(3D 空间和 1D 时间)。我们通过流动体模研究证明了 SVD 去噪滤波器的性能,与其他经典滤波器相比,该方法具有更高的性能(在 1 至 10mm/s 的组织运动和低至 2.6mm/s 的轴向血流条件下,具有更好的对比噪声比)。SVD 去噪滤波器揭示了以前未检测到的血流,如微血管网络或因组织或探头运动伪影而受到严重干扰的血流。我们报告了一些临床应用,包括小动物超声脑成像(血流检测极限为 0.5mm/s)和新生儿脑成像、肝脏或肾脏多普勒成像等几个临床成像案例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验