Suppr超能文献

基于肌电图手势分类和模型预测控制驱动外骨骼的渐进式康复

Progressive Rehabilitation Based on EMG Gesture Classification and an MPC-Driven Exoskeleton.

作者信息

Bonilla Daniel, Bravo Manuela, Bonilla Stephany P, Iragorri Angela M, Mendez Diego, Mondragon Ivan F, Alvarado-Rojas Catalina, Colorado Julian D

机构信息

School of Engineering, Pontificia Universidad Javeriana, Bogota 110231, Colombia.

Neurology, School of Medicine, Hospital Universitario San Ignacio, Bogota 110231, Colombia.

出版信息

Bioengineering (Basel). 2023 Jun 27;10(7):770. doi: 10.3390/bioengineering10070770.

Abstract

Stroke is a leading cause of disability and death worldwide, with a prevalence of 200 millions of cases worldwide. Motor disability is presented in 80% of patients. In this context, physical rehabilitation plays a fundamental role for gradually recovery of mobility. In this work, we designed a robotic hand exoskeleton to support rehabilitation of patients after a stroke episode. The system acquires electromyographic (EMG) signals in the forearm, and automatically estimates the movement intention for five gestures. Subsequently, we developed a predictive adaptive control of the exoskeleton to compensate for three different levels of muscle fatigue during the rehabilitation therapy exercises. The proposed system could be used to assist the rehabilitation therapy of the patients by providing a repetitive, intense, and adaptive assistance.

摘要

中风是全球致残和致死的主要原因,全球患病率达2亿例。80%的患者存在运动功能障碍。在此背景下,物理康复对于患者运动能力的逐渐恢复起着至关重要的作用。在这项工作中,我们设计了一种机器人手部外骨骼,以支持中风发作后患者的康复。该系统采集前臂的肌电(EMG)信号,并自动估计五种手势的运动意图。随后,我们开发了外骨骼的预测自适应控制,以补偿康复治疗运动过程中三种不同程度的肌肉疲劳。所提出的系统可通过提供重复性、高强度和自适应的辅助来协助患者的康复治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d34c/10376571/8910da5a97cd/bioengineering-10-00770-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验