Adewuyi Adenike A, Hargrove Levi J, Kuiken Todd A
Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA.
Center for Bionic Medicine, Shirley Ryan Ability Lab, 355 East Erie, Suite 11-1414, Chicago, IL, 60611, USA.
J Neuroeng Rehabil. 2017 May 4;14(1):39. doi: 10.1186/s12984-017-0246-x.
The use of pattern recognition-based methods to control myoelectric upper-limb prostheses has been well studied in individuals with high-level amputations but few studies have demonstrated that it is suitable for partial-hand amputees, who often possess a functional wrist. This study's objective was to evaluate strategies that allow partial-hand amputees to control a prosthetic hand while allowing retain wrist function.
EMG data was recorded from the extrinsic and intrinsic hand muscles of six non-amputees and two partial-hand amputees while they performed 4 hand motions in 13 different wrist positions. The performance of 4 classification schemes using EMG data alone and EMG data combined with wrist positional information was evaluated. Using recorded wrist positional data, the relationship between EMG features and wrist position was modeled and used to develop a wrist position-independent classification scheme.
A multi-layer perceptron artificial neural network classifier was better able to discriminate four hand motion classes in 13 wrist positions than a linear discriminant analysis classifier (p = 0.006), quadratic discriminant analysis classifier (p < 0.0001) and a linear perceptron artificial neural network classifier (p = 0.04). The addition of wrist position data to EMG data significantly improved performance (p < 0.001). Training the classifier with the combination of extrinsic and intrinsic muscle EMG data performed significantly better than using intrinsic (p < 0.0001) or extrinsic muscle EMG data alone (p < 0.0001), and training with intrinsic muscle EMG data performed significantly better than extrinsic muscle EMG data alone (p < 0.001). The same trends were observed for amputees, except training with intrinsic muscle EMG data, on average, performed worse than the extrinsic muscle EMG data. We propose a wrist position-independent controller that simulates data from multiple wrist positions and is able to significantly improve performance by 48-74% (p < 0.05) for non-amputees and by 45-66% for partial-hand amputees, compared to a classifier trained only with data from a neutral wrist position and tested with data from multiple positions.
Sensor fusion (using EMG and wrist position information), non-linear artificial neural networks, combining EMG data across multiple muscle sources, and simulating data from different wrist positions are effective strategies for mitigating the wrist position effect and improving classification performance.
基于模式识别的方法用于控制肌电上肢假肢,在高位截肢患者中已有充分研究,但很少有研究表明其适用于部分手部截肢患者,这类患者通常保留有功能性手腕。本研究的目的是评估能让部分手部截肢患者控制假手同时保留手腕功能的策略。
在6名非截肢者和2名部分手部截肢者执行13种不同手腕位置的4种手部动作时,记录其手部外在和内在肌肉的肌电数据。评估了仅使用肌电数据以及肌电数据与手腕位置信息相结合的4种分类方案的性能。利用记录的手腕位置数据,对肌电特征与手腕位置之间的关系进行建模,并用于开发一种与手腕位置无关的分类方案。
与线性判别分析分类器(p = 0.006)、二次判别分析分类器(p < 0.0001)和线性感知器人工神经网络分类器(p = 0.04)相比,多层感知器人工神经网络分类器在13种手腕位置上能更好地区分4种手部动作类别。将手腕位置数据添加到肌电数据中可显著提高性能(p < 0.001)。使用外在和内在肌肉肌电数据组合训练分类器的性能明显优于仅使用内在(p < 0.0001)或外在肌肉肌电数据(p < 0.0001),且使用内在肌肉肌电数据训练的性能明显优于仅使用外在肌肉肌电数据(p < 0.001)。截肢者也观察到了相同趋势,只是平均而言,使用内在肌肉肌电数据训练的表现比外在肌肉肌电数据更差。我们提出一种与手腕位置无关的控制器,该控制器模拟来自多个手腕位置的数据,与仅使用中立手腕位置数据训练并在多个位置数据上测试的分类器相比,对于非截肢者能显著提高性能48 - 74%(p < 0.05),对于部分手部截肢者能提高45 - 66%。
传感器融合(使用肌电和手腕位置信息)、非线性人工神经网络、跨多个肌肉源组合肌电数据以及模拟来自不同手腕位置的数据是减轻手腕位置影响和提高分类性能的有效策略。