Suppr超能文献

SVSI:用于在有序分类性状的测序研究中识别罕见变异的快速且强大的集值系统识别方法。

SVSI: fast and powerful set-valued system identification approach to identifying rare variants in sequencing studies for ordered categorical traits.

作者信息

Bi Wenjian, Kang Guolian, Zhao Yanlong, Cui Yuehua, Yan Song, Li Yun, Cheng Cheng, Pounds Stanley B, Borowitz Michael J, Relling Mary V, Yang Jun J, Liu Zhifa, Pui Ching-Hon, Hunger Stephen P, Hartford Christine M, Leung Wing, Zhang Ji-Feng

机构信息

Key Laboratory of Systems and Control, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P.R.C.

Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, U.S.A.

出版信息

Ann Hum Genet. 2015 Jul;79(4):294-309. doi: 10.1111/ahg.12117. Epub 2015 May 11.

Abstract

In genetic association studies of an ordered categorical phenotype, it is usual to either regroup multiple categories of the phenotype into two categories and then apply the logistic regression (LG), or apply ordered logistic (oLG), or ordered probit (oPRB) regression, which accounts for the ordinal nature of the phenotype. However, they may lose statistical power or may not control type I error due to their model assumption and/or instable parameter estimation algorithm when the genetic variant is rare or sample size is limited. To solve this problem, we propose a set-valued (SV) system model to identify genetic variants associated with an ordinal categorical phenotype. We couple this model with a SV system identification algorithm to identify all the key system parameters. Simulations and two real data analyses show that SV and LG accurately controlled the Type I error rate even at a significance level of 10(-6) but not oLG and oPRB in some cases. LG had significantly less power than the other three methods due to disregarding of the ordinal nature of the phenotype, and SV had similar or greater power than oLG and oPRB. We argue that SV should be employed in genetic association studies for ordered categorical phenotype.

摘要

在对有序分类表型进行基因关联研究时,通常有以下几种做法:要么将该表型的多个类别重新组合为两类,然后应用逻辑回归(LG);要么应用有序逻辑回归(oLG),或者有序概率回归(oPRB),这些方法考虑了表型的顺序性质。然而,当基因变异罕见或样本量有限时,由于其模型假设和/或不稳定的参数估计算法,这些方法可能会损失统计效力,或者无法控制I型错误。为了解决这个问题,我们提出了一种集值(SV)系统模型,以识别与有序分类表型相关的基因变异。我们将该模型与一种SV系统识别算法相结合,以识别所有关键系统参数。模拟和两项真实数据分析表明,即使在显著性水平为10^(-6)时,SV和LG也能准确控制I型错误率,但在某些情况下oLG和oPRB则不能。由于忽略了表型的顺序性质,LG的效力显著低于其他三种方法,而SV的效力与oLG和oPRB相似或更高。我们认为,在对有序分类表型进行基因关联研究时应采用SV方法。

相似文献

本文引用的文献

2
The NHGRI GWAS Catalog, a curated resource of SNP-trait associations.NHGRI GWAS Catalog,一个经过精心策划的 SNP 与特征关联资源。
Nucleic Acids Res. 2014 Jan;42(Database issue):D1001-6. doi: 10.1093/nar/gkt1229. Epub 2013 Dec 6.
3
Cancer pharmacogenomics: strategies and challenges.癌症药物基因组学:策略与挑战。
Nat Rev Genet. 2013 Jan;14(1):23-34. doi: 10.1038/nrg3352. Epub 2012 Nov 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验