Sindhu Kumari S, Gupta Neha, Shiels Alan, FitzGerald Paul G, Menon Anil G, Mathias Richard T, Varadaraj Kulandaiappan
Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA.
Washington University School of Medicine, St. Louis, MO, USA.
Biochem Biophys Res Commun. 2015 Jul 10;462(4):339-45. doi: 10.1016/j.bbrc.2015.04.138. Epub 2015 May 8.
Maintenance of proper biomechanics of the eye lens is important for its structural integrity and for the process of accommodation to focus near and far objects. Several studies have shown that specialized cytoskeletal systems such as the beaded filament (BF) and spectrin-actin networks contribute to mammalian lens biomechanics; mutations or deletion in these proteins alters lens biomechanics. Aquaporin 0 (AQP0), which constitutes ∼45% of the total membrane proteins of lens fiber cells, has been shown to function as a water channel and a structural cell-to-cell adhesion (CTCA) protein. Our recent ex vivo study on AQP0 knockout (AQP0 KO) mouse lenses showed the CTCA function of AQP0 could be crucial for establishing the refractive index gradient. However, biomechanical studies on the role of AQP0 are lacking. The present investigation used wild type (WT), AQP5 KO (AQP5(-/-)), AQP0 KO (heterozygous KO: AQP0(+/-); homozygous KO: AQP0(-/-); all in C57BL/6J) and WT-FVB/N mouse lenses to learn more about the role of fiber cell AQPs in lens biomechanics. Electron microscopic images exhibited decreases in lens fiber cell compaction and increases in extracellular space due to deletion of even one allele of AQP0. Biomechanical assay revealed that loss of one or both alleles of AQP0 caused a significant reduction in the compressive load-bearing capacity of the lenses compared to WT lenses. Conversely, loss of AQP5 did not alter the lens load-bearing ability. Compressive load-bearing at the suture area of AQP0(+/-) lenses showed easy separation while WT lens suture remained intact. These data from KO mouse lenses in conjunction with previous studies on lens-specific BF proteins (CP49 and filensin) suggest that AQP0 and BF proteins could act co-operatively in establishing normal lens biomechanics. We hypothesize that AQP0, with its prolific expression at the fiber cell membrane, could provide anchorage for cytoskeletal structures like BFs and together they help to confer fiber cell shape, architecture and integrity. To our knowledge, this is the first report identifying the involvement of an aquaporin in lens biomechanics. Since accommodation is required in human lenses for proper focusing, alteration in the adhesion and/or water channel functions of AQP0 could contribute to presbyopia.
维持晶状体的适当生物力学对其结构完整性以及聚焦远近物体的调节过程都很重要。多项研究表明,诸如串珠状细丝(BF)和血影蛋白-肌动蛋白网络等特殊细胞骨架系统有助于哺乳动物晶状体的生物力学;这些蛋白质的突变或缺失会改变晶状体生物力学。水通道蛋白0(AQP0)占晶状体纤维细胞总膜蛋白的约45%,已被证明具有水通道功能和细胞间结构性黏附(CTCA)蛋白的功能。我们最近对AQP0基因敲除(AQP0 KO)小鼠晶状体的体外研究表明,AQP0的CTCA功能对于建立折射率梯度可能至关重要。然而,关于AQP0作用的生物力学研究尚缺。本研究使用野生型(WT)、AQP5基因敲除(AQP5(-/-))、AQP0基因敲除(杂合基因敲除:AQP0(+/-);纯合基因敲除:AQP0(-/-);均为C57BL/6J品系)以及WT-FVB/N小鼠晶状体,以进一步了解纤维细胞水通道蛋白在晶状体生物力学中的作用。电子显微镜图像显示,由于AQP0的一个等位基因缺失,晶状体纤维细胞压缩减少,细胞外空间增加。生物力学分析表明,与WT晶状体相比,AQP0的一个或两个等位基因缺失导致晶状体的抗压承载能力显著降低。相反,AQP5缺失并未改变晶状体的承载能力。AQP0(+/-)晶状体缝合处的抗压承载显示易于分离,而WT晶状体缝合处保持完整。这些来自基因敲除小鼠晶状体的数据,结合之前对晶状体特异性BF蛋白(CP49和丝状晶蛋白)的研究表明,AQP0和BF蛋白可能在建立正常晶状体生物力学中协同作用。我们推测,AQP0在纤维细胞膜上大量表达,可为BF等细胞骨架结构提供锚定,它们共同帮助赋予纤维细胞形状、结构和完整性。据我们所知,这是第一份确定水通道蛋白参与晶状体生物力学的报告。由于人类晶状体需要调节以实现适当聚焦,AQP0的黏附功能和/或水通道功能的改变可能导致老花眼。