Dauvergne Duncan, Edelstein-Keshet Leah
Department of Mathematics, U. Toronto, Toronto, ON, Canada M5S 2E4.
Department of Mathematics, UBC, Vancouver, BC, Canada V6T 1Z2.
J Theor Biol. 2015 Aug 21;379:47-58. doi: 10.1016/j.jtbi.2015.04.033. Epub 2015 May 8.
We consider bidirectional transport of cargo by molecular motors dynein and kinesin that walk along microtubules, and/or diffuse in the cell. The motors compete to transport cargo in opposite directions with respect to microtubule polarity (towards the plus or minus end of the microtubule). In recent work, Gou et al. (2014) used a hierarchical set of models, each consisting of continuum transport equations to track the evolution of motors and their cargo (early endosomes) in the specific case of the fungus Ustilago maydis. We complement their work using a framework of quasi-steady state analysis developed by Newby and Bressloff (2010) and Bressloff and Newby (2013) to reduce the models to an approximating steady state Fokker-Plank equation. This analysis allows us to find analytic approximations to the steady state solutions in many cases where the full models are not easily solved. Consequently, we can make predictions about parameter dependence of the resulting spatial distributions. We also characterize the overall rates of bulk transport and diffusion, and how these are related to state transition parameters, motor speeds, microtubule polarity distribution, and specific assumptions made.
我们考虑由沿着微管行走和/或在细胞中扩散的分子马达动力蛋白和驱动蛋白进行的货物双向运输。这些马达相对于微管极性(朝向微管的正端或负端)在相反方向上竞争运输货物。在最近的工作中,Gou等人(2014年)使用了一组分层模型,每个模型都由连续运输方程组成,以追踪在真菌玉米黑粉菌的特定情况下马达及其货物(早期内体)的演变。我们使用Newby和Bressloff(2010年)以及Bressloff和Newby(2013年)开发的准稳态分析框架来补充他们的工作,将模型简化为一个近似稳态的福克 - 普朗克方程。这种分析使我们能够在许多难以求解完整模型的情况下找到稳态解的解析近似。因此,我们可以对所得空间分布的参数依赖性进行预测。我们还表征了整体的大量运输和扩散速率,以及这些速率如何与状态转换参数、马达速度、微管极性分布以及所做的特定假设相关。