Zhou Zhuhuang, Wu Shuicai, Chang King-Jen, Chen Wei-Ren, Chen Yung-Sheng, Kuo Wen-Hung, Lin Chung-Chih, Tsui Po-Hsiang
Biomedical Engineering Center, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124 China.
Department of Surgery, Cheng Ching General Hospital, Chung Kang Branch, Taichung, 407 Taiwan.
J Med Biol Eng. 2015;35(2):178-187. doi: 10.1007/s40846-015-0031-x. Epub 2015 Apr 11.
Posterior acoustic shadowing (PAS) can bias breast tumor segmentation and classification in ultrasound images. In this paper, half-contour features are proposed to classify benign and malignant breast tumors with PAS, considering the fact that the upper half of the tumor contour is less affected by PAS. Adaptive thresholding and disk expansion are employed to detect tumor contours. Based on the detected full contour, the upper half contour is extracted. For breast tumor classification, six quantitative feature parameters are analyzed for both full contours and half contours, including standard deviation of degree (SDD), which is proposed to describe tumor irregularity. Fifty clinical cases (40 with PAS and 10 without PAS) were used. Tumor circularity (TC) and SDD were both effective full- and half-contour parameters in classifying images without PAS. Half-contour TC [74 % accuracy, 72 % sensitivity, 76 % specificity, 0.78 area under the receiver operating characteristic curve (AUC), > 0.05] significantly improved the classification of breast tumors with PAS compared to that with full-contour TC (54 % accuracy, 56 % sensitivity, 52 % specificity, 0.52 AUC, > 0.05). Half-contour SDD (72 % accuracy, 76 % sensitivity, 68 % specificity, 0.81 AUC, < 0.05) improved the classification of breast tumors with PAS compared to that with full-contour SDD (62 % accuracy, 80 % sensitivity, 44 % specificity, 0.61 AUC, > 0.05). The proposed half-contour TC and SDD may be useful in classifying benign and malignant breast tumors in ultrasound images affected by PAS.
后方声影(PAS)会使超声图像中乳腺肿瘤的分割和分类产生偏差。本文提出了半轮廓特征,用于在存在PAS的情况下对乳腺良恶性肿瘤进行分类,这是考虑到肿瘤轮廓的上半部分受PAS影响较小这一事实。采用自适应阈值处理和圆盘膨胀来检测肿瘤轮廓。基于检测到的完整轮廓,提取上半部分轮廓。对于乳腺肿瘤分类,针对完整轮廓和半轮廓分析了六个定量特征参数,包括用于描述肿瘤不规则性的角度标准差(SDD)。使用了50例临床病例(40例存在PAS,10例不存在PAS)。在对不存在PAS的图像进行分类时,肿瘤圆形度(TC)和SDD在完整轮廓和半轮廓情况下都是有效的参数。与完整轮廓的TC(准确率54%,灵敏度56%,特异度52%,受试者操作特征曲线下面积(AUC)为0.52,P>0.05)相比,半轮廓的TC(准确率74%,灵敏度72%,特异度76%,AUC为0.78,P>0.05)显著提高了存在PAS的乳腺肿瘤的分类效果。与完整轮廓的SDD(准确率62%,灵敏度80%,特异度44%,AUC为0.61,P>0.05)相比,半轮廓的SDD(准确率72%,灵敏度76%,特异度68%,AUC为0.81,P<0.05)提高了存在PAS的乳腺肿瘤的分类效果。所提出的半轮廓TC和SDD可能有助于对受PAS影响的超声图像中的乳腺良恶性肿瘤进行分类。