Molecular Medicine Laboratory, Department of Research, Changhua Christian Hospital, Changhua, Taiwan.
Department of Breast Surgery, The Affiliated Hospital (Group) of Putian University, Putian, Fujian, China.
Sci Rep. 2021 Jan 14;11(1):1418. doi: 10.1038/s41598-021-81008-x.
Traditional computer-aided diagnosis (CAD) processes include feature extraction, selection, and classification. Effective feature extraction in CAD is important in improving the classification's performance. We introduce a machine-learning method and have designed an analysis procedure of benign and malignant breast tumour classification in ultrasound (US) images without a need for a priori tumour region-selection processing, thereby decreasing clinical diagnosis efforts while maintaining high classification performance. Our dataset constituted 677 US images (benign: 312, malignant: 365). Regarding two-dimensional US images, the oriented gradient descriptors' histogram pyramid was extracted and utilised to obtain feature vectors. The correlation-based feature selection method was used to evaluate and select significant feature sets for further classification. Sequential minimal optimisation-combining local weight learning-was utilised for classification and performance enhancement. The image dataset's classification performance showed an 81.64% sensitivity and 87.76% specificity for malignant images (area under the curve = 0.847). The positive and negative predictive values were 84.1 and 85.8%, respectively. Here, a new workflow, utilising machine learning to recognise malignant US images was proposed. Comparison of physician diagnoses and the automatic classifications made using machine learning yielded similar outcomes. This indicates the potential applicability of machine learning in clinical diagnoses.
传统的计算机辅助诊断 (CAD) 过程包括特征提取、选择和分类。在 CAD 中进行有效的特征提取对于提高分类性能很重要。我们引入了一种机器学习方法,并设计了一种无需先验肿瘤区域选择处理的良性和恶性乳腺肿瘤超声 (US) 图像分类分析程序,从而减少临床诊断工作,同时保持高分类性能。我们的数据集由 677 张 US 图像组成(良性:312 张,恶性:365 张)。对于二维 US 图像,提取定向梯度描述符的直方图金字塔,并利用其获取特征向量。采用基于相关性的特征选择方法评估和选择重要的特征集,以进行进一步分类。顺序最小优化-结合局部权重学习-用于分类和性能增强。图像数据集的分类性能显示恶性图像的灵敏度为 81.64%,特异性为 87.76%(曲线下面积=0.847)。阳性和阴性预测值分别为 84.1%和 85.8%。这里提出了一种利用机器学习识别恶性 US 图像的新工作流程。比较医生的诊断和使用机器学习进行的自动分类,得出了相似的结果。这表明机器学习在临床诊断中的潜在适用性。