Suppr超能文献

基于同质斑块的超声乳腺肿瘤分割。

Segmentation of ultrasonic breast tumors based on homogeneous patch.

机构信息

School of Automation, University of Electronic Science and Technology of China, Chengdu 611731, China.

出版信息

Med Phys. 2012 Jun;39(6):3299-318. doi: 10.1118/1.4718565.

Abstract

PURPOSE

Accurately segmenting breast tumors in ultrasound (US) images is a difficult problem due to their specular nature and appearance of sonographic tumors. The current paper presents a variant of the normalized cut (NCut) algorithm based on homogeneous patches (HP-NCut) for the segmentation of ultrasonic breast tumors.

METHODS

A novel boundary-detection function is defined by combining texture and intensity information to find the fuzzy boundaries in US images. Subsequently, based on the precalculated boundary map, an adaptive neighborhood according to image location referred to as a homogeneous patch (HP) is proposed. HPs are guaranteed to spread within the same tissue region; thus, the statistics of primary features within the HPs is more reliable in distinguishing the different tissues and benefits subsequent segmentation. Finally, the fuzzy distribution of textons within HPs is used as final image features, and the segmentation is obtained using the NCut framework.

RESULTS

The HP-NCut algorithm was evaluated on a large dataset of 100 breast US images (50 benign and 50 malignant). The mean Hausdorff distance measure, the mean minimum Euclidean distance measure and similarity measure achieved 7.1 pixels, 1.58 pixels, and 86.67%, respectively, for benign tumors while those achieved 10.57 pixels, 1.98 pixels, and 84.41%, respectively, for malignant tumors.

CONCLUSIONS

The HP-NCut algorithm provided the improvement in accuracy and robustness compared with state-of-the-art methods. A conclusion that the HP-NCut algorithm is suitable for ultrasonic tumor segmentation problems can be drawn.

摘要

目的

由于乳腺肿瘤的镜面特性和超声肿瘤的出现,准确分割超声(US)图像中的乳腺肿瘤是一个难题。本文提出了一种基于均匀补丁(HP-NCut)的归一化割(NCut)算法变体,用于超声乳腺肿瘤的分割。

方法

通过结合纹理和强度信息定义了一种新的边界检测函数,以在 US 图像中找到模糊边界。随后,基于预计算的边界图,根据图像位置提出了一种称为均匀补丁(HP)的自适应邻域。HP 保证在同一组织区域内传播;因此,HP 内主要特征的统计在区分不同组织方面更可靠,有利于后续分割。最后,将 HP 内纹理的模糊分布用作最终图像特征,并使用 NCut 框架进行分割。

结果

HP-NCut 算法在 100 个乳腺 US 图像(50 个良性和 50 个恶性)的大型数据集上进行了评估。良性肿瘤的平均 Hausdorff 距离度量、平均最小欧几里得距离度量和相似度量分别为 7.1 像素、1.58 像素和 86.67%,恶性肿瘤的分别为 10.57 像素、1.98 像素和 84.41%。

结论

与最先进的方法相比,HP-NCut 算法在准确性和鲁棒性方面都有所提高。可以得出结论,HP-NCut 算法适用于超声肿瘤分割问题。

相似文献

1
Segmentation of ultrasonic breast tumors based on homogeneous patch.
Med Phys. 2012 Jun;39(6):3299-318. doi: 10.1118/1.4718565.
2
Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions.
IEEE Trans Med Imaging. 2003 Feb;22(2):155-69. doi: 10.1109/TMI.2002.808364.
6
Fuzzy entropy based on differential evolution for breast gland segmentation.
Australas Phys Eng Sci Med. 2018 Dec;41(4):1101-1114. doi: 10.1007/s13246-018-0672-5. Epub 2018 Sep 10.
7
Multiscale superpixel method for segmentation of breast ultrasound.
Comput Biol Med. 2020 Oct;125:103879. doi: 10.1016/j.compbiomed.2020.103879. Epub 2020 Jul 6.
8
A region-based segmentation method for ultrasound images in HIFU therapy.
Med Phys. 2016 Jun;43(6):2975-2989. doi: 10.1118/1.4950706.
9
A Dynamic Graph Cuts Method with Integrated Multiple Feature Maps for Segmenting Kidneys in 2D Ultrasound Images.
Acad Radiol. 2018 Sep;25(9):1136-1145. doi: 10.1016/j.acra.2018.01.004. Epub 2018 Feb 12.
10
Spectral clustering algorithms for ultrasound image segmentation.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):862-9. doi: 10.1007/11566489_106.

引用本文的文献

1
BUSIS: A Benchmark for Breast Ultrasound Image Segmentation.
Healthcare (Basel). 2022 Apr 14;10(4):729. doi: 10.3390/healthcare10040729.
2
Lesion segmentation in breast ultrasound images using the optimized marked watershed method.
Biomed Eng Online. 2021 Jun 7;20(1):57. doi: 10.1186/s12938-021-00891-7.
3
Breast ultrasound lesions recognition: end-to-end deep learning approaches.
J Med Imaging (Bellingham). 2019 Jan;6(1):011007. doi: 10.1117/1.JMI.6.1.011007. Epub 2018 Oct 10.
4
Automatic Segmentation of Ultrasound Tomography Image.
Biomed Res Int. 2017;2017:2059036. doi: 10.1155/2017/2059036. Epub 2017 Sep 10.
6
A Split-and-Merge-Based Uterine Fibroid Ultrasound Image Segmentation Method in HIFU Therapy.
PLoS One. 2015 May 14;10(5):e0125738. doi: 10.1371/journal.pone.0125738. eCollection 2015.

本文引用的文献

1
A robust graph-based segmentation method for breast tumors in ultrasound images.
Ultrasonics. 2012 Feb;52(2):266-75. doi: 10.1016/j.ultras.2011.08.011. Epub 2011 Aug 25.
2
A computational approach to edge detection.
IEEE Trans Pattern Anal Mach Intell. 1986 Jun;8(6):679-98.
3
Phase-based level set segmentation of ultrasound images.
IEEE Trans Inf Technol Biomed. 2011 Jan;15(1):138-47. doi: 10.1109/TITB.2010.2090889.
4
Boundary detection in medical images using edge following algorithm based on intensity gradient and texture gradient features.
IEEE Trans Biomed Eng. 2011 Mar;58(3):567-73. doi: 10.1109/TBME.2010.2091129. Epub 2010 Nov 9.
5
TurboPixel segmentation using eigen-images.
IEEE Trans Image Process. 2010 Nov;19(11):3024-34. doi: 10.1109/TIP.2010.2052268. Epub 2010 Jun 7.
6
Attribute vector guided groupwise registration.
Neuroimage. 2010 May 1;50(4):1485-96. doi: 10.1016/j.neuroimage.2010.01.040. Epub 2010 Jan 22.
7
TurboPixels: fast superpixels using geometric flows.
IEEE Trans Pattern Anal Mach Intell. 2009 Dec;31(12):2290-7. doi: 10.1109/TPAMI.2009.96.
8
Automated segmentation of ultrasonic breast lesions using statistical texture classification and active contour based on probability distance.
Ultrasound Med Biol. 2009 Aug;35(8):1309-24. doi: 10.1016/j.ultrasmedbio.2008.12.007. Epub 2009 May 28.
9
Reduction of breast biopsies with a modified self-organizing map.
IEEE Trans Neural Netw. 1997;8(6):1386-96. doi: 10.1109/72.641462.
10
Automated segmentation of breast lesions in ultrasound images.
Conf Proc IEEE Eng Med Biol Soc. 2005;2005:7433-5. doi: 10.1109/IEMBS.2005.1616230.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验