Suppr超能文献

MiRduplexSVM:一种高性能的微小RNA双链体预测与评估方法。

MiRduplexSVM: A High-Performing MiRNA-Duplex Prediction and Evaluation Methodology.

作者信息

Karathanasis Nestoras, Tsamardinos Ioannis, Poirazi Panayiota

机构信息

Department of Biology, University of Crete, Heraklion, Greece; Institute of Molecular Biology and Biotechnology (IMBB), Foundation of Research and Technology Hellas (FORTH), Heraklion, Greece.

Department of Computer Science, University of Crete, Heraklion, Greece; Institute of Computer Science (ICS), Foundation of Research and Technology Hellas (FORTH), Heraklion, Greece.

出版信息

PLoS One. 2015 May 11;10(5):e0126151. doi: 10.1371/journal.pone.0126151. eCollection 2015.

Abstract

We address the problem of predicting the position of a miRNA duplex on a microRNA hairpin via the development and application of a novel SVM-based methodology. Our method combines a unique problem representation and an unbiased optimization protocol to learn from mirBase19.0 an accurate predictive model, termed MiRduplexSVM. This is the first model that provides precise information about all four ends of the miRNA duplex. We show that (a) our method outperforms four state-of-the-art tools, namely MaturePred, MiRPara, MatureBayes, MiRdup as well as a Simple Geometric Locator when applied on the same training datasets employed for each tool and evaluated on a common blind test set. (b) In all comparisons, MiRduplexSVM shows superior performance, achieving up to a 60% increase in prediction accuracy for mammalian hairpins and can generalize very well on plant hairpins, without any special optimization. (c) The tool has a number of important applications such as the ability to accurately predict the miRNA or the miRNA*, given the opposite strand of a duplex. Its performance on this task is superior to the 2nts overhang rule commonly used in computational studies and similar to that of a comparative genomic approach, without the need for prior knowledge or the complexity of performing multiple alignments. Finally, it is able to evaluate novel, potential miRNAs found either computationally or experimentally. In relation with recent confidence evaluation methods used in miRBase, MiRduplexSVM was successful in identifying high confidence potential miRNAs.

摘要

我们通过开发和应用一种基于支持向量机的新方法,解决了预测微小RNA双链体在微小RNA发夹结构上位置的问题。我们的方法结合了独特的问题表示和无偏优化协议,从mirBase19.0中学习,构建了一个准确的预测模型,称为MiRduplexSVM。这是第一个能提供有关微小RNA双链体所有四个末端精确信息的模型。我们表明:(a)当在每个工具所使用的相同训练数据集上应用并在一个共同的盲测集上评估时,我们的方法优于四种先进工具,即MaturePred、MiRPara、MatureBayes、MiRdup以及一个简单几何定位器。(b)在所有比较中,MiRduplexSVM都表现出卓越的性能,对于哺乳动物发夹结构,预测准确率提高了高达60%,并且在植物发夹结构上无需任何特殊优化就能很好地泛化。(c)该工具具有许多重要应用,比如在已知双链体的相反链时,能够准确预测微小RNA或微小RNA*。它在这项任务上的表现优于计算研究中常用的2nt突出端规则,与比较基因组方法的表现类似,无需先验知识,也无需进行多重比对的复杂性。最后,它能够评估通过计算或实验发现的新型潜在微小RNA。与miRBase中最近使用的置信度评估方法相关,MiRduplexSVM成功地识别出了高置信度的潜在微小RNA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f035/4427487/5be71ea0c5ec/pone.0126151.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验