Suppr超能文献

周质结合蛋白及其相互作用伙伴的溶液核磁共振研究。

Solution NMR studies of periplasmic binding proteins and their interaction partners.

作者信息

Pistolesi Sara, Tjandra Nico, Bermejo Guillermo A

出版信息

Biomol Concepts. 2011 Apr 1;2(1-2):53-64. doi: 10.1515/bmc.2011.005.

Abstract

Periplasmic binding proteins (PBPs) are a crucial part of ATP-binding cassette import systems in Gram-negative bacteria. Central to their function is the ability to undergo a large-scale conformational rearrangement from open-unliganded to closed-liganded, which signals the presence of substrate and starts its translocation. Over the years, PBPs have been extensively studied not only owing to their essential role in nutrient uptake but also because they serve as excellent models for both practical applications (e.g., biosensor technology) and basic research (e.g., allosteric mechanisms). Although much of our knowledge at atomic level has been inferred from the detailed, static pictures afforded by crystallographic studies, nuclear magnetic resonance (NMR) has been able to fill certain gaps in such body of work, particularly with regard to dynamic processes. Here, we review NMR studies on PBPs, and their unique insights on conformation, dynamics, energetics, substrate binding, and interactions with related transport proteins. Based on the analysis of recent paramagnetic NMR results, as well as crystallographic and functional observations, we propose a mechanism that could explain the ability of certain PBPs to achieve a closed conformation in absence of ligand while others seem to remain open until ligand-mediated closure.

摘要

周质结合蛋白(PBPs)是革兰氏阴性菌中ATP结合盒式转运系统的关键组成部分。其功能的核心在于能够经历从开放未结合状态到闭合结合状态的大规模构象重排,这表明底物的存在并启动其转运。多年来,PBPs不仅因其在营养物质摄取中的重要作用而受到广泛研究,还因其作为实际应用(如生物传感器技术)和基础研究(如变构机制)的优秀模型而备受关注。尽管我们在原子水平上的许多知识是从晶体学研究提供的详细静态图片中推断出来的,但核磁共振(NMR)能够填补这一工作领域的某些空白,特别是在动态过程方面。在这里,我们回顾了关于PBPs的NMR研究,以及它们在构象、动力学、能量学、底物结合以及与相关转运蛋白相互作用方面的独特见解。基于对最近顺磁NMR结果以及晶体学和功能观察的分析,我们提出了一种机制,该机制可以解释某些PBPs在没有配体的情况下实现闭合构象的能力,而其他PBPs似乎在配体介导的闭合之前保持开放状态。

相似文献

1
Solution NMR studies of periplasmic binding proteins and their interaction partners.
Biomol Concepts. 2011 Apr 1;2(1-2):53-64. doi: 10.1515/bmc.2011.005.
3
Accessing a hidden conformation of the maltose binding protein using accelerated molecular dynamics.
PLoS Comput Biol. 2011 Apr;7(4):e1002034. doi: 10.1371/journal.pcbi.1002034. Epub 2011 Apr 21.
4
Trapping open and closed forms of FitE: a group III periplasmic binding protein.
Proteins. 2009 May 15;75(3):598-609. doi: 10.1002/prot.22272.
6
The solution structure, binding properties, and dynamics of the bacterial siderophore-binding protein FepB.
J Biol Chem. 2014 Oct 17;289(42):29219-34. doi: 10.1074/jbc.M114.564021. Epub 2014 Aug 29.
8
Atomic structures of periplasmic binding proteins and the high-affinity active transport systems in bacteria.
Philos Trans R Soc Lond B Biol Sci. 1990 Jan 30;326(1236):341-51; discussion 351-2. doi: 10.1098/rstb.1990.0016.
9
On the function of TRAP substrate-binding proteins: Conformational variation of the sialic acid binding protein SiaP.
J Biol Chem. 2024 Nov;300(11):107851. doi: 10.1016/j.jbc.2024.107851. Epub 2024 Sep 30.
10
Conformational plasticity of the type I maltose ABC importer.
Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5492-7. doi: 10.1073/pnas.1217745110. Epub 2013 Mar 18.

引用本文的文献

1
Structure-driven development of a biomimetic rare earth artificial metalloprotein.
Proc Natl Acad Sci U S A. 2024 Aug 13;121(33):e2405836121. doi: 10.1073/pnas.2405836121. Epub 2024 Aug 8.
2
Conformation-Dependent Hydrogen-Bonding Interactions in a Switchable Artificial Metalloprotein.
Biochemistry. 2024 Aug 20;63(16):2040-2050. doi: 10.1021/acs.biochem.4c00209. Epub 2024 Aug 1.
3
Retracing the evolution of a modern periplasmic binding protein.
Protein Sci. 2023 Nov;32(11):e4793. doi: 10.1002/pro.4793.
4
Engineering a Conformationally Switchable Artificial Metalloprotein.
J Am Chem Soc. 2022 Nov 30;144(47):21606-21616. doi: 10.1021/jacs.2c08885. Epub 2022 Nov 15.
5
NMR Analysis of Apo Glutamine-Binding Protein Exposes Challenges in the Study of Interdomain Dynamics.
Angew Chem Int Ed Engl. 2019 Nov 18;58(47):16899-16902. doi: 10.1002/anie.201911015. Epub 2019 Oct 11.
6
Role of the two structural domains from the periplasmic Escherichia coli histidine-binding protein HisJ.
J Biol Chem. 2013 Nov 1;288(44):31409-22. doi: 10.1074/jbc.M113.490441. Epub 2013 Sep 13.
8
Induced fit or conformational selection? The role of the semi-closed state in the maltose binding protein.
Biochemistry. 2011 Dec 6;50(48):10530-9. doi: 10.1021/bi201481a. Epub 2011 Nov 10.

本文引用的文献

2
NMR evidence for differential phosphorylation-dependent interactions in WT and DeltaF508 CFTR.
EMBO J. 2010 Jan 6;29(1):263-77. doi: 10.1038/emboj.2009.329. Epub 2009 Nov 19.
3
Computational design of ligand binding is not a solved problem.
Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18491-6. doi: 10.1073/pnas.0907950106. Epub 2009 Oct 15.
4
ABC transporters: a riddle wrapped in a mystery inside an enigma.
Trends Biochem Sci. 2009 Oct;34(10):520-31. doi: 10.1016/j.tibs.2009.06.004. Epub 2009 Sep 11.
6
Stimulation of the maltose transporter ATPase by unliganded maltose binding protein.
Biochemistry. 2009 Aug 25;48(33):8051-61. doi: 10.1021/bi9007066.
8
The ATP-binding cassette family: a structural perspective.
Cell Mol Life Sci. 2009 Oct;66(19):3111-26. doi: 10.1007/s00018-009-0064-9. Epub 2009 Jun 21.
10
NMR and EPR studies of membrane transporters.
Biol Chem. 2009 Aug;390(8):815-34. doi: 10.1515/BC.2009.084.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验