Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801.
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109.
Proc Natl Acad Sci U S A. 2024 Aug 13;121(33):e2405836121. doi: 10.1073/pnas.2405836121. Epub 2024 Aug 8.
The 2011 discovery of the first rare earth-dependent enzyme in methylotrophic AM1 prompted intensive research toward understanding the unique chemistry at play in these systems. This enzyme, an alcohol dehydrogenase (ADH), features a La ion closely associated with redox-active coenzyme pyrroloquinoline quinone (PQQ) and is structurally homologous to the Ca-dependent ADH from the same organism. AM1 also produces a periplasmic PQQ-binding protein, PqqT, which we have now structurally characterized to 1.46-Å resolution by X-ray diffraction. This crystal structure reveals a Lys residue hydrogen-bonded to PQQ at the site analogously occupied by a Lewis acidic cation in ADH. Accordingly, we prepared KA- and KD-PqqT variants to assess the relevance of this site toward metal binding. Isothermal titration calorimetry experiments and titrations monitored by UV-Vis absorption and emission spectroscopies support that KD-PqqT binds tightly ( = 0.6 ± 0.2 μM) to La in the presence of bound PQQ and produces spectral signatures consistent with those of ADH enzymes. These spectral signatures are not observed for WT- or KA-variants or upon addition of Ca to PQQ ⸦ KD-PqqT. Addition of benzyl alcohol to La-bound PQQ ⸦ KD-PqqT (but not Ca-bound PQQ ⸦ KD-PqqT, or La-bound PQQ ⸦ WT-PqqT) produces spectroscopic changes associated with PQQ reduction, and chemical trapping experiments reveal the production of benzaldehyde, supporting ADH activity. By creating a metal binding site that mimics native ADH enzymes, we present a rare earth-dependent artificial metalloenzyme primed for future mechanistic, biocatalytic, and biosensing applications.
2011 年在甲醇营养型 AM1 中发现了第一个依赖稀土的酶,这促使人们深入研究这些系统中发挥作用的独特化学性质。这种酶是一种醇脱氢酶 (ADH),具有与氧化还原活性辅酶吡咯并喹啉醌 (PQQ) 密切相关的 La 离子,并且在结构上与来自同一生物体的 Ca 依赖性 ADH 同源。AM1 还产生一种周质 PQQ 结合蛋白 PqqT,我们现在已经通过 X 射线衍射将其结构解析到 1.46-Å 分辨率。该晶体结构揭示了一个 Lys 残基与 PQQ 形成氢键,其位置类似于 ADH 中 Lewis 酸性阳离子占据的位置。因此,我们制备了 KA-和 KD-PqqT 变体,以评估该位点对金属结合的相关性。等温滴定量热法实验和通过 UV-Vis 吸收和发射光谱监测的滴定实验表明,在结合 PQQ 的情况下,KD-PqqT 与 La 紧密结合( = 0.6 ± 0.2 μM),并产生与 ADH 酶一致的光谱特征。这些光谱特征在 WT-或 KA-变体或在将 Ca 添加到 PQQ ⸦ KD-PqqT 时观察不到。向 La 结合的 PQQ ⸦ KD-PqqT(但不是 Ca 结合的 PQQ ⸦ KD-PqqT 或 La 结合的 PQQ ⸦ WT-PqqT)中添加苄醇会产生与 PQQ 还原相关的光谱变化,并且化学捕获实验表明产生了苯甲醛,支持 ADH 活性。通过创建一个模拟天然 ADH 酶的金属结合位点,我们提出了一种依赖稀土的人工金属酶,为未来的机制、生物催化和生物传感应用做好了准备。