Rajagopal Ponni, Tse Eric, Borst Andrew J, Delbecq Scott P, Shi Lei, Southworth Daniel R, Klevit Rachel E
Department of Biochemistry, University of Washington, Seattle, United States.
Department of Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, United States.
Elife. 2015 May 11;4:e07304. doi: 10.7554/eLife.07304.
Small heat shock proteins (sHSPs) are essential 'holdase' chaperones that form large assemblies and respond dynamically to pH and temperature stresses to protect client proteins from aggregation. While the alpha-crystallin domain (ACD) dimer of sHSPs is the universal building block, how the ACD transmits structural changes in response to stress to promote holdase activity is unknown. We found that the dimer interface of HSPB5 is destabilized over physiological pHs and a conserved histidine (His-104) controls interface stability and oligomer structure in response to acidosis. Destabilization by pH or His-104 mutation shifts the ACD from dimer to monomer but also results in a large expansion of HSPB5 oligomer states. Remarkably, His-104 mutant-destabilized oligomers are efficient holdases that reorganize into structurally distinct client-bound complexes. Our data support a model for sHSP function wherein cell stress triggers small perturbations that alter the ACD building blocks to unleash a cryptic mode of chaperone action.
小分子热休克蛋白(sHSPs)是重要的“保持酶”伴侣蛋白,它们形成大型聚集体,并对pH值和温度应激做出动态反应,以保护客户蛋白不发生聚集。虽然sHSPs的α-晶状体蛋白结构域(ACD)二聚体是通用的结构单元,但ACD如何响应应激传递结构变化以促进保持酶活性尚不清楚。我们发现,HSPB5的二聚体界面在生理pH值范围内不稳定,一个保守的组氨酸(His-104)控制界面稳定性和寡聚体结构以响应酸中毒。pH值或His-104突变导致的不稳定会使ACD从二聚体转变为单体,但也会导致HSPB5寡聚体状态的大幅扩展。值得注意的是,His-104突变导致不稳定的寡聚体是高效的保持酶,它们会重组为结构不同的与客户蛋白结合的复合物。我们的数据支持一种sHSP功能模型,即细胞应激触发微小扰动,改变ACD结构单元,从而释放一种隐秘的伴侣蛋白作用模式。