Suppr超能文献

在肠炎沙门氏菌中,1,2 - 丙二醇会抑制乙醇胺的利用,以防止两种不同细菌微区室的成分发生有害混合。

In Salmonella enterica, Ethanolamine Utilization Is Repressed by 1,2-Propanediol To Prevent Detrimental Mixing of Components of Two Different Bacterial Microcompartments.

作者信息

Sturms Ryan, Streauslin Nicholas A, Cheng Shouqiang, Bobik Thomas A

机构信息

Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA.

Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA

出版信息

J Bacteriol. 2015 Jul;197(14):2412-21. doi: 10.1128/JB.00215-15. Epub 2015 May 11.

Abstract

UNLABELLED

Bacterial microcompartments (MCPs) are a diverse family of protein-based organelles composed of metabolic enzymes encapsulated within a protein shell. The function of bacterial MCPs is to optimize metabolic pathways by confining toxic and/or volatile metabolic intermediates. About 20% of bacteria produce MCPs, and there are at least seven different types. Different MCPs vary in their encapsulated enzymes, but all have outer shells composed of highly conserved proteins containing bacterial microcompartment domains. Many organisms have genes encoding more than one type of MCP, but given the high homology among shell proteins, it is uncertain whether multiple MCPs can be functionally expressed in the same cell at the same time. In these studies, we examine the regulation of the 1,2-propanediol (1,2-PD) utilization (Pdu) and ethanolamine utilization (Eut) MCPs in Salmonella. Studies showed that 1,2-PD (shown to induce the Pdu MCP) represses transcription of the Eut MCP and that the PocR regulatory protein is required. The results indicate that repression of the Eut MCP by 1,2-PD is needed to prevent detrimental mixing of shell proteins from the Eut and Pdu MCPs. Coexpression of both MCPs impaired the function of the Pdu MCP and resulted in the formation of hybrid MCPs composed of Eut and Pdu MCP components. We also show that plasmid-based expression of individual shell proteins from the Eut MCP or the β-carboxysome impaired the function of Pdu MCP. Thus, the high conservation among bacterial microcompartment (BMC) domain shell proteins is problematic for coexpression of the Eut and Pdu MCPs and perhaps other MCPs as well.

IMPORTANCE

Bacterial MCPs are encoded by nearly 20% of bacterial genomes, and almost 40% of those genomes contain multiple MCP gene clusters. In this study, we examine how the regulation of two different MCP systems (Eut and Pdu) is integrated in Salmonella. Our findings indicate that 1,2-PD (shown to induce the Pdu MCP) represses the Eut MCP to prevent detrimental mixing of Eut and Pdu shell proteins. These findings suggest that numerous organisms which produce more than one type of MCP likely need some mechanism to prevent aberrant shell protein interactions.

摘要

未加标签

细菌微区室(MCPs)是一类多样的基于蛋白质的细胞器,由包裹在蛋白质外壳内的代谢酶组成。细菌MCPs的功能是通过限制有毒和/或挥发性代谢中间产物来优化代谢途径。约20%的细菌会产生MCPs,且至少有七种不同类型。不同的MCPs所含的包裹酶不同,但它们的外壳均由含有细菌微区室结构域的高度保守蛋白质组成。许多生物体都有编码不止一种类型MCP的基因,但鉴于外壳蛋白之间的高度同源性,尚不确定多种MCPs能否在同一细胞中同时功能性表达。在这些研究中,我们研究了沙门氏菌中1,2 - 丙二醇(1,2 - PD)利用(Pdu)和乙醇胺利用(Eut)MCPs的调控情况。研究表明,1,2 - PD(已证明可诱导Pdu MCP)会抑制Eut MCP的转录,且需要PocR调控蛋白。结果表明,1,2 - PD对Eut MCP的抑制作用是为了防止Eut和Pdu MCP的外壳蛋白发生有害混合。两种MCPs的共表达会损害Pdu MCP的功能,并导致由Eut和Pdu MCP成分组成的杂交MCPs的形成。我们还表明,基于质粒表达来自Eut MCP或β - 羧酶体的单个外壳蛋白会损害Pdu MCP的功能。因此,细菌微区室(BMC)结构域外壳蛋白之间的高度保守性对于Eut和Pdu MCPs以及可能其他MCPs的共表达来说是个问题。

重要性

细菌MCPs由近20%的细菌基因组编码,且这些基因组中近40%包含多个MCP基因簇。在本研究中,我们研究了沙门氏菌中两种不同的MCP系统(Eut和Pdu)的调控是如何整合的。我们的研究结果表明,1,2 - PD(已证明可诱导Pdu MCP)会抑制Eut MCP,以防止Eut和Pdu外壳蛋白发生有害混合。这些发现表明,许多产生不止一种类型MCP的生物体可能需要某种机制来防止异常的外壳蛋白相互作用。

相似文献

4
The PduL Phosphotransacylase Is Used To Recycle Coenzyme A within the Pdu Microcompartment.
J Bacteriol. 2015 Jul;197(14):2392-9. doi: 10.1128/JB.00056-15. Epub 2015 May 11.
5
Engineering transcriptional regulation to control Pdu microcompartment formation.
PLoS One. 2014 Nov 26;9(11):e113814. doi: 10.1371/journal.pone.0113814. eCollection 2014.
8
The N Terminus of the PduB Protein Binds the Protein Shell of the Pdu Microcompartment to Its Enzymatic Core.
J Bacteriol. 2017 Mar 28;199(8). doi: 10.1128/JB.00785-16. Print 2017 Apr 15.
9
Evidence for Improved Encapsulated Pathway Behavior in a Bacterial Microcompartment through Shell Protein Engineering.
ACS Synth Biol. 2017 Oct 20;6(10):1880-1891. doi: 10.1021/acssynbio.7b00042. Epub 2017 Jun 21.
10
Engineering the PduT shell protein to modify the permeability of the 1,2-propanediol microcompartment of .
Microbiology (Reading). 2019 Dec;165(12):1355-1364. doi: 10.1099/mic.0.000872.

引用本文的文献

1
Promiscuous structural cross-compatibilities between major shell components of Klebsiella pneumoniae bacterial microcompartments.
PLoS One. 2025 May 7;20(5):e0322518. doi: 10.1371/journal.pone.0322518. eCollection 2025.
2
Integrative analysis of the ethanolamine utilization bacterial microcompartment in .
mSystems. 2024 Aug 20;9(8):e0075024. doi: 10.1128/msystems.00750-24. Epub 2024 Jul 18.
3
Ethanolamine enhances adhesion, promotes microcompartment formation, and modulates gene expression in ATCC 14869.
Gut Microbes. 2024 Jan-Dec;16(1):2350778. doi: 10.1080/19490976.2024.2350778. Epub 2024 May 8.
5
Analysis of Bacterial Microcompartments and Shell Protein Superstructures by Confocal Microscopy.
Microbiol Spectr. 2023 Feb 14;11(2):e0335722. doi: 10.1128/spectrum.03357-22.
6
Mucosal metabolites fuel the growth and virulence of E. coli linked to Crohn's disease.
JCI Insight. 2022 May 23;7(10):e157013. doi: 10.1172/jci.insight.157013.
7
Clues to the function of bacterial microcompartments from ancillary genes.
Biochem Soc Trans. 2021 Jun 30;49(3):1085-1098. doi: 10.1042/BST20200632.
8
A catalog of the diversity and ubiquity of bacterial microcompartments.
Nat Commun. 2021 Jun 21;12(1):3809. doi: 10.1038/s41467-021-24126-4.
9
Prokaryotic Organelles: Bacterial Microcompartments in and .
EcoSal Plus. 2020 Oct;9(1). doi: 10.1128/ecosalplus.ESP-0025-2019.

本文引用的文献

1
A taxonomy of bacterial microcompartment loci constructed by a novel scoring method.
PLoS Comput Biol. 2014 Oct 23;10(10):e1003898. doi: 10.1371/journal.pcbi.1003898. eCollection 2014 Oct.
2
Diverse bacterial microcompartment organelles.
Microbiol Mol Biol Rev. 2014 Sep;78(3):438-68. doi: 10.1128/MMBR.00009-14.
5
Bacterial microcompartment shells of diverse functional types possess pentameric vertex proteins.
Protein Sci. 2013 May;22(5):660-5. doi: 10.1002/pro.2246. Epub 2013 Apr 8.
6
Using comparative genomics to uncover new kinds of protein-based metabolic organelles in bacteria.
Protein Sci. 2013 Feb;22(2):179-95. doi: 10.1002/pro.2196. Epub 2013 Jan 4.
8
The mechanism for RNA recognition by ANTAR regulators of gene expression.
PLoS Genet. 2012;8(6):e1002666. doi: 10.1371/journal.pgen.1002666. Epub 2012 Jun 7.
9
Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota.
Proc Natl Acad Sci U S A. 2011 Oct 18;108(42):17480-5. doi: 10.1073/pnas.1107857108. Epub 2011 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验