Suppr超能文献

用于 1,2-丙二醇发酵的尿路致病性大肠杆菌 CFT073 甘氨酰基自由基微区室的遗传特征。

Genetic Characterization of a Glycyl Radical Microcompartment Used for 1,2-Propanediol Fermentation by Uropathogenic Escherichia coli CFT073.

机构信息

The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA.

The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA

出版信息

J Bacteriol. 2020 Apr 9;202(9). doi: 10.1128/JB.00017-20.

Abstract

Bacterial microcompartments (MCPs) are widespread protein-based organelles composed of metabolic enzymes encapsulated within a protein shell. The function of MCPs is to optimize metabolic pathways by confining toxic and/or volatile pathway intermediates. A major class of MCPs known as glycyl radical MCPs has only been partially characterized. Here, we show that uropathogenic CFT073 uses a glycyl radical MCP for 1,2-propanediol (1,2-PD) fermentation. Bioinformatic analyses identified a large gene cluster (named for lycyl adical ropanediol) that encodes homologs of a glycyl radical diol dehydratase, other 1,2-PD catabolic enzymes, and MCP shell proteins. Growth studies showed that CFT073 grows on 1,2-PD under anaerobic conditions but not under aerobic conditions. All 19 genes were individually deleted, and 8/19 were required for 1,2-PD fermentation. Electron microscopy and genetic studies showed that a bacterial MCP is involved. Bioinformatics combined with genetic analyses support a proposed pathway of 1,2-PD degradation and suggest that enzymatic cofactors are recycled internally within the Grp MCP. A two-component system ( and ) is shown to mediate induction of the locus by 1,2-PD. Tests of the Reference (ECOR) collection indicate that >10% of strains ferment 1,2-PD using a glycyl radical MCP. In contrast to other MCP systems, individual deletions of MCP shell genes (, , and ) eliminated 1,2-PD catabolism, suggesting significant functional differences with known MCPs. Overall, the studies presented here are the first comprehensive genetic analysis of a Grp-type MCP. Bacterial MCPs have a number of potential biotechnology applications and have been linked to bacterial pathogenesis, cancer, and heart disease. Glycyl radical MCPs are a large but understudied class of bacterial MCPs. Here, we show that uropathogenic CFT073 uses a glycyl radical MCP for 1,2-PD fermentation, and we conduct a comprehensive genetic analysis of the genes involved. Studies suggest significant functional differences between the glycyl radical MCP of CFT073 and better-studied MCPs. They also provide a foundation for building a deeper general understanding of glycyl radical MCPs in an organism where sophisticated genetic methods are available.

摘要

细菌微隔间(MCPs)是广泛存在的蛋白基细胞器,由包裹在蛋白壳内的代谢酶组成。MCPs 的功能是通过限制有毒和/或挥发性途径中间产物来优化代谢途径。一类被称为甘氨酰基自由基 MCPs 的主要 MCPs 仅部分得到了表征。在这里,我们表明尿路致病性 CFT073 使用甘氨酰基自由基 MCP 进行 1,2-丙二醇(1,2-PD)发酵。生物信息学分析鉴定出一个大型基因簇(命名为 用于甘氨酰基自由基丙二醇),该基因簇编码甘氨酰基自由基二醇脱水酶、其他 1,2-PD 分解代谢酶和 MCP 壳蛋白的同源物。生长研究表明,CFT073 在厌氧条件下但不在需氧条件下生长在 1,2-PD 上。19 个基因逐个缺失,其中 8 个基因缺失则无法进行 1,2-PD 发酵。电子显微镜和遗传研究表明涉及细菌 MCP。生物信息学结合遗传分析支持提出的 1,2-PD 降解途径,并表明酶辅因子在 Grp MCP 内内部循环回收。双组分系统(和)被证明可以介导 1,2-PD 诱导 基因座的表达。对 参考(ECOR)集的测试表明,>10%的 菌株使用甘氨酰基自由基 MCP 发酵 1,2-PD。与其他 MCP 系统不同,MCP 壳基因(,,和)的单个缺失消除了 1,2-PD 分解代谢,表明与已知的 MCP 存在显著的功能差异。总的来说,这里呈现的研究是对 Grp 型 MCP 的首次全面遗传分析。细菌 MCPs 具有许多潜在的生物技术应用,并与细菌发病机制、癌症和心脏病有关。甘氨酰基自由基 MCPs 是一个较大但研究较少的细菌 MCP 类群。在这里,我们表明尿路致病性 CFT073 使用甘氨酰基自由基 MCP 进行 1,2-PD 发酵,并对涉及的基因进行了全面的遗传分析。研究表明,CFT073 的甘氨酰基自由基 MCP 与研究较好的 MCPs 之间存在显著的功能差异。它们还为在具有复杂遗传方法的生物体中更深入地了解甘氨酰基自由基 MCP 提供了基础。

相似文献

引用本文的文献

2
Electrochemical cofactor recycling of bacterial microcompartments.细菌微室的电化学辅助因子回收。
Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2414220121. doi: 10.1073/pnas.2414220121. Epub 2024 Nov 25.
5
Recent structural insights into bacterial microcompartment shells.近期对细菌微室壳结构的深入了解。
Curr Opin Microbiol. 2021 Aug;62:51-60. doi: 10.1016/j.mib.2021.04.007. Epub 2021 May 28.
7
MCPdb: The bacterial microcompartment database.MCPdb:细菌微隔间数据库。
PLoS One. 2021 Mar 29;16(3):e0248269. doi: 10.1371/journal.pone.0248269. eCollection 2021.
8
Advances in the World of Bacterial Microcompartments.细菌微室领域的研究进展
Trends Biochem Sci. 2021 May;46(5):406-416. doi: 10.1016/j.tibs.2020.12.002. Epub 2021 Jan 11.

本文引用的文献

3
Cargo encapsulation in bacterial microcompartments: Methods and analysis.细菌微区室中的货物封装:方法与分析。
Methods Enzymol. 2019;617:155-186. doi: 10.1016/bs.mie.2018.12.009. Epub 2019 Feb 10.
6
Biotechnological Advances in Bacterial Microcompartment Technology.生物技术在细菌微室技术中的进展。
Trends Biotechnol. 2019 Mar;37(3):325-336. doi: 10.1016/j.tibtech.2018.08.006. Epub 2018 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验