Suppr超能文献

磷酸盐转运对线粒体Ca2+动力学的双重作用。

Dual Effect of Phosphate Transport on Mitochondrial Ca2+ Dynamics.

作者信息

Wei An-Chi, Liu Ting, O'Rourke Brian

机构信息

From the Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205.

From the Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205

出版信息

J Biol Chem. 2015 Jun 26;290(26):16088-98. doi: 10.1074/jbc.M114.628446. Epub 2015 May 11.

Abstract

The large inner membrane electrochemical driving force and restricted volume of the matrix confer unique constraints on mitochondrial ion transport. Cation uptake along with anion and water movement induces swelling if not compensated by other processes. For mitochondrial Ca(2+) uptake, these include activation of countertransporters (Na(+)/Ca(2+) exchanger and Na(+)/H(+) exchanger) coupled to the proton gradient, ultimately maintained by the proton pumps of the respiratory chain, and Ca(2+) binding to matrix buffers. Inorganic phosphate (Pi) is known to affect both the Ca(2+) uptake rate and the buffering reaction, but the role of anion transport in determining mitochondrial Ca(2+) dynamics is poorly understood. Here we simultaneously monitor extra- and intra-mitochondrial Ca(2+) and mitochondrial membrane potential (ΔΨm) to examine the effects of anion transport on mitochondrial Ca(2+) flux and buffering in Pi-depleted guinea pig cardiac mitochondria. Mitochondrial Ca(2+) uptake proceeded slowly in the absence of Pi but matrix free Ca(2+) ([Ca(2+)]mito) still rose to ~50 μm. Pi (0.001-1 mm) accelerated Ca(2+) uptake but decreased [Ca(2+)]mito by almost 50% while restoring ΔΨm. Pi-dependent effects on Ca(2+) were blocked by inhibiting the phosphate carrier. Mitochondrial Ca(2+) uptake rate was also increased by vanadate (Vi), acetate, ATP, or a non-hydrolyzable ATP analog (AMP-PNP), with differential effects on matrix Ca(2+) buffering and ΔΨm recovery. Interestingly, ATP or AMP-PNP prevented the effects of Pi on Ca(2+) uptake. The results show that anion transport imposes an upper limit on mitochondrial Ca(2+) uptake and modifies the [Ca(2+)]mito response in a complex manner.

摘要

线粒体内膜巨大的电化学驱动力以及基质有限的体积,给线粒体离子转运带来了独特的限制。如果没有其他过程的补偿,阳离子摄取以及阴离子和水的移动会导致肿胀。对于线粒体Ca(2+)摄取而言,这些过程包括与质子梯度偶联的反向转运体(Na(+)/Ca(2+)交换体和Na(+)/H(+)交换体)的激活,而质子梯度最终由呼吸链的质子泵维持,以及Ca(2+)与基质缓冲剂的结合。已知无机磷酸盐(Pi)会影响Ca(2+)摄取速率和缓冲反应,但阴离子转运在决定线粒体Ca(2+)动态变化中的作用却知之甚少。在这里,我们同时监测线粒体外和线粒体内的Ca(2+)以及线粒体膜电位(ΔΨm),以研究阴离子转运对Pi缺乏的豚鼠心脏线粒体中Ca(2+)通量和缓冲的影响。在没有Pi的情况下,线粒体Ca(2+)摄取进行缓慢,但基质游离Ca(2+)([Ca(2+)]mito)仍升至约50μm。Pi(0.001 - 1mm)加速了Ca(2+)摄取,但使[Ca(2+)]mito降低了近50%,同时恢复了ΔΨm。抑制磷酸盐载体可阻断Pi对Ca(2+)的依赖性作用。钒酸盐(Vi)、乙酸盐、ATP或不可水解的ATP类似物(AMP - PNP)也可增加线粒体Ca(2+)摄取速率,对基质Ca(2+)缓冲和ΔΨm恢复有不同影响。有趣的是,ATP或AMP - PNP可阻止Pi对Ca(2+)摄取的影响。结果表明,阴离子转运对线粒体Ca(2+)摄取施加了上限,并以复杂的方式改变了[Ca(2+)]mito反应。

相似文献

1
Dual Effect of Phosphate Transport on Mitochondrial Ca2+ Dynamics.
J Biol Chem. 2015 Jun 26;290(26):16088-98. doi: 10.1074/jbc.M114.628446. Epub 2015 May 11.
3
Dynamic buffering of mitochondrial Ca2+ during Ca2+ uptake and Na+-induced Ca2+ release.
J Bioenerg Biomembr. 2013 Jun;45(3):189-202. doi: 10.1007/s10863-012-9483-7. Epub 2012 Dec 7.
6
Changes in mitochondrial calcium concentration during the cardiac contraction cycle.
Cardiovasc Res. 1993 Oct;27(10):1800-9. doi: 10.1093/cvr/27.10.1800.
7
Extra-matrix Mg2+ limits Ca2+ uptake and modulates Ca2+ uptake-independent respiration and redox state in cardiac isolated mitochondria.
J Bioenerg Biomembr. 2013 Jun;45(3):203-18. doi: 10.1007/s10863-013-9500-5. Epub 2013 Mar 3.
8
Effects of inorganic phosphate on ion exchange, energy state, and contraction in mammalian heart.
Am J Physiol. 1982 Jan;242(1):H79-88. doi: 10.1152/ajpheart.1982.242.1.H79.
9
Mitochondrial calcium and the regulation of metabolism in the heart.
J Mol Cell Cardiol. 2015 Jan;78:35-45. doi: 10.1016/j.yjmcc.2014.10.019. Epub 2014 Nov 7.
10
Mitochondrial phosphate transport during nutrient stimulation of INS-1E insulinoma cells.
Mol Cell Endocrinol. 2013 Dec 5;381(1-2):198-209. doi: 10.1016/j.mce.2013.08.003. Epub 2013 Aug 9.

引用本文的文献

1
Ca Sensors Assemble: Function of the MCU Complex in the Pancreatic Beta Cell.
Cells. 2022 Jun 22;11(13):1993. doi: 10.3390/cells11131993.
2
Mitochondrial calcium exchange in physiology and disease.
Physiol Rev. 2022 Apr 1;102(2):893-992. doi: 10.1152/physrev.00041.2020. Epub 2021 Oct 26.
3
TAT for Enzyme/Protein Delivery to Restore or Destroy Cell Activity in Human Diseases.
Life (Basel). 2021 Sep 6;11(9):924. doi: 10.3390/life11090924.
4
Mitochondrial ion channels in cardiac function.
Am J Physiol Cell Physiol. 2021 Nov 1;321(5):C812-C825. doi: 10.1152/ajpcell.00246.2021. Epub 2021 Sep 22.
5
Mitochondrial Ca in heart failure: Not enough or too much?
J Mol Cell Cardiol. 2021 Feb;151:126-134. doi: 10.1016/j.yjmcc.2020.11.014. Epub 2020 Dec 5.
6
Mitochondrial CaMKII causes adverse metabolic reprogramming and dilated cardiomyopathy.
Nat Commun. 2020 Sep 4;11(1):4416. doi: 10.1038/s41467-020-18165-6.
7
The debate continues - What is the role of MCU and mitochondrial calcium uptake in the heart?
J Mol Cell Cardiol. 2020 Jun;143:163-174. doi: 10.1016/j.yjmcc.2020.04.029. Epub 2020 Apr 27.
9
Calcium Signaling in Cardiomyocyte Function.
Cold Spring Harb Perspect Biol. 2020 Mar 2;12(3):a035428. doi: 10.1101/cshperspect.a035428.
10
Mitochondrial Ca concentrations in live cells: quantification methods and discrepancies.
FEBS Lett. 2019 Jul;593(13):1528-1541. doi: 10.1002/1873-3468.13427. Epub 2019 May 18.

本文引用的文献

2
MICU1 and MICU2 finely tune the mitochondrial Ca2+ uniporter by exerting opposite effects on MCU activity.
Mol Cell. 2014 Mar 6;53(5):726-37. doi: 10.1016/j.molcel.2014.01.013. Epub 2014 Feb 20.
3
SLC25A23 augments mitochondrial Ca²⁺ uptake, interacts with MCU, and induces oxidative stress-mediated cell death.
Mol Biol Cell. 2014 Mar;25(6):936-47. doi: 10.1091/mbc.E13-08-0502. Epub 2014 Jan 15.
4
EMRE is an essential component of the mitochondrial calcium uniporter complex.
Science. 2013 Dec 13;342(6164):1379-82. doi: 10.1126/science.1242993. Epub 2013 Nov 14.
5
The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit.
EMBO J. 2013 Aug 28;32(17):2362-76. doi: 10.1038/emboj.2013.157. Epub 2013 Jul 30.
6
MCU encodes the pore conducting mitochondrial calcium currents.
Elife. 2013 Jun 4;2:e00704. doi: 10.7554/eLife.00704.
7
MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca²⁺ uniporter.
Cell Metab. 2013 Jun 4;17(6):976-987. doi: 10.1016/j.cmet.2013.04.020.
8
MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling.
PLoS One. 2013;8(2):e55785. doi: 10.1371/journal.pone.0055785. Epub 2013 Feb 7.
9
MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism.
Nat Cell Biol. 2012 Dec;14(12):1336-43. doi: 10.1038/ncb2622. Epub 2012 Nov 25.
10
Mitochondria as sensors and regulators of calcium signalling.
Nat Rev Mol Cell Biol. 2012 Sep;13(9):566-78. doi: 10.1038/nrm3412. Epub 2012 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验