Suppr超能文献

心肌细胞功能中的钙信号转导。

Calcium Signaling in Cardiomyocyte Function.

机构信息

Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium.

出版信息

Cold Spring Harb Perspect Biol. 2020 Mar 2;12(3):a035428. doi: 10.1101/cshperspect.a035428.

Abstract

Rhythmic increases in intracellular Ca concentration underlie the contractile function of the heart. These heart muscle-wide changes in intracellular Ca are induced and coordinated by electrical depolarization of the cardiomyocyte sarcolemma by the action potential. Originating at the sinoatrial node, conduction of this electrical signal throughout the heart ensures synchronization of individual myocytes into an effective cardiac pump. Ca signaling pathways also regulate gene expression and cardiomyocyte growth during development and in pathology. These fundamental roles of Ca in the heart are illustrated by the prevalence of altered Ca homeostasis in cardiovascular diseases. Indeed, heart failure (an inability of the heart to support hemodynamic needs), rhythmic disturbances, and inappropriate cardiac growth all share an involvement of altered Ca handling. The prevalence of these pathologies, contributing to a third of all deaths in the developed world as well as to substantial morbidity makes understanding the mechanisms of Ca handling and dysregulation in cardiomyocytes of great importance.

摘要

细胞内钙离子浓度的有节奏增加是心脏收缩功能的基础。这种心肌细胞内钙离子的广泛变化是由动作电位引起的心肌细胞膜去极化引起和协调的。起源于窦房结,这种电信号在心脏中的传导确保了单个心肌细胞的同步有效心脏泵功能。钙信号通路还调节发育过程中和病理学中的基因表达和心肌细胞生长。钙在心脏中的这些基本作用,通过心血管疾病中钙稳态的改变的普遍性来体现。事实上,心力衰竭(心脏无法支持血液动力学需求)、节律紊乱和不当的心脏生长都与钙处理的改变有关。这些病理的普遍性,导致了发达世界三分之一的死亡以及大量的发病率,使得理解心肌细胞中钙处理和调节失常的机制变得非常重要。

相似文献

1
Calcium Signaling in Cardiomyocyte Function.
Cold Spring Harb Perspect Biol. 2020 Mar 2;12(3):a035428. doi: 10.1101/cshperspect.a035428.
3
Human cardiomyocyte calcium handling and transverse tubules in mid-stage of post-myocardial-infarction heart failure.
ESC Heart Fail. 2018 Jun;5(3):332-342. doi: 10.1002/ehf2.12271. Epub 2018 Feb 12.
5
Phospholamban ablation in hearts expressing the high affinity SERCA2b isoform normalizes global Ca²⁺ homeostasis but not Ca²⁺-dependent hypertrophic signaling.
Am J Physiol Heart Circ Physiol. 2012 Jun 15;302(12):H2574-82. doi: 10.1152/ajpheart.01166.2011. Epub 2012 Apr 13.
7
Calcium-regulated transcriptional pathways in the normal and pathologic heart.
IUBMB Life. 2011 Oct;63(10):847-55. doi: 10.1002/iub.545. Epub 2011 Sep 7.
8
CYP2J2-derived epoxyeicosatrienoic acids suppress endoplasmic reticulum stress in heart failure.
Mol Pharmacol. 2014 Jan;85(1):105-15. doi: 10.1124/mol.113.087122. Epub 2013 Oct 21.
9
Calcium-handling abnormalities underlying atrial arrhythmogenesis and contractile dysfunction in dogs with congestive heart failure.
Circ Arrhythm Electrophysiol. 2008 Jun 1;1(2):93-102. doi: 10.1161/CIRCEP.107.754788. Epub 2008 Apr 30.
10
Ca2+-regulated-cAMP/PKA signaling in cardiac pacemaker cells links ATP supply to demand.
J Mol Cell Cardiol. 2011 Nov;51(5):740-8. doi: 10.1016/j.yjmcc.2011.07.018. Epub 2011 Jul 28.

引用本文的文献

1
A gene regulatory element modulates myosin expression and controls cardiomyocyte response to stress.
bioRxiv. 2025 Jul 20:2025.07.19.665672. doi: 10.1101/2025.07.19.665672.
3
ZnO nanoparticles induce acute arrhythmia and heart failure in mice by disturbing cardiac ion channels.
Front Cardiovasc Med. 2025 May 30;12:1569265. doi: 10.3389/fcvm.2025.1569265. eCollection 2025.
5
A biodegradable, microstructured, electroconductive and nano-integrated drug eluting patch (MENDEP) for myocardial tissue engineering.
Bioact Mater. 2025 Apr 14;50:246-272. doi: 10.1016/j.bioactmat.2025.04.008. eCollection 2025 Aug.
6
Longevity mechanisms in cardiac aging: exploring calcium dysregulation and senescence.
Biogerontology. 2025 Apr 21;26(3):94. doi: 10.1007/s10522-025-10229-8.
8
Short coupled Ventricular Fibrillation in a patient with TRPM4 mutation.
Indian Pacing Electrophysiol J. 2025 Mar-Apr;25(2):108-111. doi: 10.1016/j.ipej.2025.03.003. Epub 2025 Mar 9.
9
Mercury-Mediated Cardiovascular Toxicity: Mechanisms and Remedies.
Cardiovasc Toxicol. 2025 Mar;25(3):507-522. doi: 10.1007/s12012-025-09966-6. Epub 2025 Feb 4.

本文引用的文献

2
Dyadic Plasticity in Cardiomyocytes.
Front Physiol. 2018 Dec 11;9:1773. doi: 10.3389/fphys.2018.01773. eCollection 2018.
3
Phosphorylation of the ryanodine receptor 2 at serine 2030 is required for a complete β-adrenergic response.
J Gen Physiol. 2019 Feb 4;151(2):131-145. doi: 10.1085/jgp.201812155. Epub 2018 Dec 12.
4
Species differences in the morphology of transverse tubule openings in cardiomyocytes.
Europace. 2018 Nov 1;20(suppl_3):iii120-iii124. doi: 10.1093/europace/euy245.
5
Heterocellularity and Cellular Cross-Talk in the Cardiovascular System.
Front Cardiovasc Med. 2018 Nov 1;5:143. doi: 10.3389/fcvm.2018.00143. eCollection 2018.
6
3D dSTORM imaging reveals novel detail of ryanodine receptor localization in rat cardiac myocytes.
J Physiol. 2019 Jan;597(2):399-418. doi: 10.1113/JP277360. Epub 2018 Nov 28.
7
Interplay Between Sub-Cellular Alterations of Calcium Release and T-Tubular Defects in Cardiac Diseases.
Front Physiol. 2018 Oct 25;9:1474. doi: 10.3389/fphys.2018.01474. eCollection 2018.
8
9
Ryanodine receptor dispersion disrupts Ca release in failing cardiac myocytes.
Elife. 2018 Oct 30;7:e39427. doi: 10.7554/eLife.39427.
10
Nuclear translocation of calmodulin in pathological cardiac hypertrophy originates from ryanodine receptor bound calmodulin.
J Mol Cell Cardiol. 2018 Dec;125:87-97. doi: 10.1016/j.yjmcc.2018.10.011. Epub 2018 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验