Dastgheyb Sana S, Villaruz Amer E, Le Katherine Y, Tan Vee Y, Duong Anthony C, Chatterjee Som S, Cheung Gordon Y C, Joo Hwang-Soo, Hickok Noreen J, Otto Michael
Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
Infect Immun. 2015 Jul;83(7):2966-75. doi: 10.1128/IAI.00394-15. Epub 2015 May 11.
Staphylococcus aureus is a leading cause of prosthetic joint infections, which, as we recently showed, proceed with the involvement of biofilm-like clusters that cause recalcitrance to antibiotic treatment. Here we analyzed why these clusters grow extraordinarily large, reaching macroscopically visible extensions (>1 mm). We found that while specific S. aureus surface proteins are a prerequisite for agglomeration in synovial fluid, low activity of the Agr regulatory system and subsequent low production of the phenol-soluble modulin (PSM) surfactant peptides cause agglomerates to grow to exceptional dimensions. Our results indicate that PSMs function by disrupting interactions of biofilm matrix molecules, such as the polysaccharide intercellular adhesin (PIA), with the bacterial cell surface. Together, our findings support a two-step model of staphylococcal prosthetic joint infection: As we previously reported, interaction of S. aureus surface proteins with host matrix proteins such as fibrin initiates agglomeration; our present results show that, thereafter, the bacterial agglomerates grow to extremely large sizes owing to the lack of PSM expression under the specific conditions present in joints. Our findings provide a mechanistic explanation for the reported extreme resistance of joint infection to antibiotic treatment, lend support to the notions that Agr functionality and PSM production play a major role in defining different forms of S. aureus infection, and have important implications for antistaphylococcal therapeutic strategies.
金黄色葡萄球菌是人工关节感染的主要病因,正如我们最近所表明的,这种感染是由生物膜样簇的参与引发的,这些簇会导致对抗生素治疗产生耐药性。在此,我们分析了为什么这些簇长得格外大,达到肉眼可见的范围(>1毫米)。我们发现,虽然特定的金黄色葡萄球菌表面蛋白是在滑液中聚集的先决条件,但Agr调节系统的低活性以及随后酚溶性调节蛋白(PSM)表面活性剂肽的低产量会导致聚集体生长到异常大小。我们的结果表明,PSM通过破坏生物膜基质分子(如胞间多糖黏附素,PIA)与细菌细胞表面的相互作用来发挥功能。总之,我们的研究结果支持了金黄色葡萄球菌人工关节感染的两步模型:正如我们之前所报道的,金黄色葡萄球菌表面蛋白与宿主基质蛋白(如纤维蛋白)的相互作用引发聚集;我们目前的结果表明,此后,由于关节中特定条件下PSM表达的缺乏,细菌聚集体会生长到极大的尺寸。我们的研究结果为报道的关节感染对抗生素治疗的极端耐药性提供了一个机制性解释,支持了Agr功能和PSM产生在定义不同形式的金黄色葡萄球菌感染中起主要作用的观点,并且对抗葡萄球菌治疗策略具有重要意义。