Gógl Gergő, Schneider Kyle D, Yeh Brian J, Alam Nashida, Nguyen Ba Alex N, Moses Alan M, Hetényi Csaba, Reményi Attila, Weiss Eric L
Lendület Protein Interaction Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary.
Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America.
PLoS Biol. 2015 May 12;13(5):e1002146. doi: 10.1371/journal.pbio.1002146. eCollection 2015 May.
Eukaryotic cells commonly use protein kinases in signaling systems that relay information and control a wide range of processes. These enzymes have a fundamentally similar structure, but achieve functional diversity through variable regions that determine how the catalytic core is activated and recruited to phosphorylation targets. "Hippo" pathways are ancient protein kinase signaling systems that control cell proliferation and morphogenesis; the NDR/LATS family protein kinases, which associate with "Mob" coactivator proteins, are central but incompletely understood components of these pathways. Here we describe the crystal structure of budding yeast Cbk1-Mob2, to our knowledge the first of an NDR/LATS kinase-Mob complex. It shows a novel coactivator-organized activation region that may be unique to NDR/LATS kinases, in which a key regulatory motif apparently shifts from an inactive binding mode to an active one upon phosphorylation. We also provide a structural basis for a substrate docking mechanism previously unknown in AGC family kinases, and show that docking interaction provides robustness to Cbk1's regulation of its two known in vivo substrates. Co-evolution of docking motifs and phosphorylation consensus sites strongly indicates that a protein is an in vivo regulatory target of this hippo pathway, and predicts a new group of high-confidence Cbk1 substrates that function at sites of cytokinesis and cell growth. Moreover, docking peptides arise in unstructured regions of proteins that are probably already kinase substrates, suggesting a broad sequential model for adaptive acquisition of kinase docking in rapidly evolving intrinsically disordered polypeptides.
真核细胞通常在信号系统中使用蛋白激酶来传递信息并控制广泛的过程。这些酶具有基本相似的结构,但通过可变区域实现功能多样性,这些可变区域决定了催化核心如何被激活以及如何被招募到磷酸化靶点。“Hippo”信号通路是古老的蛋白激酶信号系统,可控制细胞增殖和形态发生;与“Mob”共激活蛋白相关的NDR/LATS家族蛋白激酶是这些信号通路的核心组成部分,但尚未被完全了解。在此,我们描述了芽殖酵母Cbk1-Mob2的晶体结构,据我们所知,这是首个NDR/LATS激酶-Mob复合物的晶体结构。它展示了一个可能为NDR/LATS激酶所特有的新型共激活剂组织的激活区域,其中一个关键调控基序在磷酸化后明显从无活性的结合模式转变为活性模式。我们还为AGC家族激酶中此前未知的底物对接机制提供了结构基础,并表明对接相互作用为Cbk1对其两个已知体内底物的调控提供了稳健性。对接基序和磷酸化共有位点的共同进化强烈表明一种蛋白是该Hippo信号通路的体内调控靶点,并预测了一组新的高可信度Cbk1底物,它们在胞质分裂和细胞生长位点发挥作用。此外,对接肽出现在可能已经是激酶底物的蛋白的无结构区域,这表明在快速进化的内在无序多肽中,激酶对接的适应性获得存在一个广泛的序列模型。