Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Institute of Organic Chemistry, Research Center for Natural Sciences, Magyar Tudósok körútja, 1117 Budapest, Hungary.
Biochemistry. 2020 May 5;59(17):1688-1700. doi: 10.1021/acs.biochem.9b01096. Epub 2020 Apr 17.
Ndr/Lats kinases bind Mob coactivator proteins to form complexes that are essential and evolutionarily conserved components of "Hippo" signaling pathways, which control cell proliferation and morphogenesis in eukaryotes. All Ndr/Lats kinases have a characteristic N-terminal regulatory (NTR) region that binds a specific Mob cofactor: Lats kinases associate with Mob1 proteins, and Ndr kinases associate with Mob2 proteins. To better understand the significance of the association of Mob protein with Ndr/Lats kinases and selective binding of Ndr and Lats to distinct Mob cofactors, we determined crystal structures of Cbk1-Mob2 and Dbf2-Mob1 and experimentally assessed determinants of Mob cofactor binding and specificity. This allowed a significant improvement in the previously determined structure of Cbk1 kinase bound to Mob2, presently the only crystallographic model of a full length Ndr/Lats kinase complexed with a Mob cofactor. Our analysis indicates that the Ndr/Lats-Mob interface provides a distinctive kinase regulation mechanism, in which the Mob cofactor organizes the Ndr/Lats NTR to interact with the AGC kinase C-terminal hydrophobic motif (HM), which is involved in allosteric regulation. The Mob-organized NTR appears to mediate association of the HM with an allosteric site on the N-terminal kinase lobe. We also found that Cbk1 and Dbf2 associated specifically with Mob2 and Mob1, respectively. Alteration of residues in the Cbk1 NTR allows association of the noncognate Mob cofactor, indicating that cofactor specificity is restricted by discrete sites rather than being broadly distributed. Overall, our analysis provides a new picture of the functional role of Mob association and indicates that the Ndr/Lats-Mob interface is largely a common structural platform that mediates kinase-cofactor binding.
Ndr/Lats 激酶与 Mob 共激活蛋白结合形成复合物,这些复合物是“ Hippo”信号通路的必需且进化上保守的组成部分,该信号通路控制真核生物中的细胞增殖和形态发生。所有 Ndr/Lats 激酶都具有特征性的 N 端调节(NTR)区域,该区域与特定的 Mob 共因子结合:Lats 激酶与 Mob1 蛋白结合,而 Ndr 激酶与 Mob2 蛋白结合。为了更好地理解 Mob 蛋白与 Ndr/Lats 激酶的关联以及 Ndr 和 Lats 对不同 Mob 共因子的选择性结合的意义,我们确定了 Cbk1-Mob2 和 Dbf2-Mob1 的晶体结构,并实验评估了 Mob 共因子结合和特异性的决定因素。这使得我们能够显著改进先前确定的与 Mob2 结合的 Cbk1 激酶结构,目前这是唯一的全长 Ndr/Lats 激酶与 Mob 共因子结合的晶体结构模型。我们的分析表明,Ndr/Lats-Mob 界面提供了一种独特的激酶调节机制,其中 Mob 共因子组织 Ndr/Lats NTR 与 AGC 激酶 C 端疏水性基序(HM)相互作用,该基序参与变构调节。Mob 组织的 NTR 似乎介导 HM 与 N 端激酶叶上的变构位点的关联。我们还发现 Cbk1 和 Dbf2 分别与 Mob2 和 Mob1 特异性结合。Cbk1 NTR 中的残基的改变允许非同源的 Mob 共因子的结合,表明共因子特异性受离散的位点限制,而不是广泛分布。总体而言,我们的分析提供了 Mob 结合的功能作用的新图景,并表明 Ndr/Lats-Mob 界面在很大程度上是介导激酶-共因子结合的共同结构平台。