文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

MuST:用于单细胞空间转录组学的多模态结构转换

MuST: multiple-modality structure transformation for single-cell spatial transcriptomics.

作者信息

Zang Zelin, Li Liangyu, Xu Yongjie, Duan Chenrui, Shen Yue, Sun Yi, Lei Zhen, Li Stan Z

机构信息

Westlake Institute for Advanced Studies, Westlake University, HangZhou, 310000, China.

Centre for Artificial Intelligence and Robotics (CAIR), HKISI-CAS, 310000.

出版信息

Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf405.


DOI:10.1093/bib/bbaf405
PMID:40874816
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12392272/
Abstract

Spatial transcriptomics (ST) technologies have revolutionized the study of gene expression patterns in tissues by providing multimodal data, including transcriptomic (Tra.), spatial, and morphological modalities, thereby offering new opportunities to understand tissue biology beyond traditional Tra. However, we identify the modality bias phenomenon in ST data species, i.e. the inconsistent contribution of different modalities to the labels leads to a tendency for the analysis methods to retain the information of the dominant modality. How to mitigate the adverse effects of modality bias to satisfy various downstream tasks remains a fundamental challenge. This paper introduces Multiple-modality Structure Transformation, named MuST, a novel methodology to tackle the challenge. MuST integrates the multi-modality information contained in the ST data effectively into a uniform latent space to provide a foundation for all the downstream tasks. It learns intrinsic local structures by topology discovery strategy and topology fusion loss function to solve the inconsistencies among different modalities. Thus, these topology-based and deep learning techniques provide a solid foundation for a variety of analytical tasks while coordinating different modalities. The effectiveness of MuST is assessed by performance metrics and biological significance. The results show that it outperforms existing state-of-the-art methods with clear advantages in the precision of identifying and preserving structures of tissues and biomarkers. MuST offers a versatile toolkit for the intricate analysis of complex biological systems.

摘要

空间转录组学(ST)技术通过提供多模态数据,包括转录组学(Tra.)、空间和形态学模态,彻底改变了组织中基因表达模式的研究,从而为超越传统转录组学理解组织生物学提供了新机会。然而,我们发现了ST数据物种中的模态偏差现象,即不同模态对标签的贡献不一致,导致分析方法倾向于保留主导模态的信息。如何减轻模态偏差的不利影响以满足各种下游任务仍然是一个基本挑战。本文介绍了一种名为多模态结构转换(MuST)的新方法来应对这一挑战。MuST将ST数据中包含的多模态信息有效地整合到一个统一的潜在空间中,为所有下游任务提供基础。它通过拓扑发现策略和拓扑融合损失函数学习内在局部结构,以解决不同模态之间的不一致性。因此,这些基于拓扑和深度学习的技术在协调不同模态的同时,为各种分析任务提供了坚实基础。通过性能指标和生物学意义评估了MuST的有效性。结果表明,它在识别和保留组织及生物标志物结构的精度方面明显优于现有最先进方法。MuST为复杂生物系统的复杂分析提供了一个多功能工具包。

相似文献

[1]
MuST: multiple-modality structure transformation for single-cell spatial transcriptomics.

Brief Bioinform. 2025-7-2

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Short-Term Memory Impairment

2025-1

[4]
Gene Spatial Integration: enhancing spatial transcriptomics analysis via deep learning and batch effect mitigation.

Bioinformatics. 2025-6-13

[5]
Cell-specific priors rescue differential gene expression in spatial spot-based technologies.

Brief Bioinform. 2024-11-22

[6]
Enhancing Spatial Domain Identification in Spatially Resolved Transcriptomics Using Graph Convolutional Networks With Adaptively Feature-Spatial Balance and Contrastive Learning.

IEEE/ACM Trans Comput Biol Bioinform. 2024

[7]
stGRL: spatial domain identification, denoising, and imputation algorithm for spatial transcriptome data based on multi-task graph contrastive representation learning.

BMC Biol. 2025-7-1

[8]
Linking transcriptome and morphology in bone cells at cellular resolution with generative AI.

J Bone Miner Res. 2024-12-31

[9]
GatorST: A Versatile Contrastive Meta-Learning Framework for Spatial Transcriptomic Data Analysis.

bioRxiv. 2025-7-19

[10]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

本文引用的文献

[1]
Unsupervised spatially embedded deep representation of spatial transcriptomics.

Genome Med. 2024-1-12

[2]
Cell clustering for spatial transcriptomics data with graph neural networks.

Nat Comput Sci. 2022-6

[3]
Structure-preserving visualization for single-cell RNA-Seq profiles using deep manifold transformation with batch-correction.

Commun Biol. 2023-4-4

[4]
Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST.

Nat Commun. 2023-3-1

[5]
Identifying spatial domain by adapting transcriptomics with histology through contrastive learning.

Brief Bioinform. 2023-3-19

[6]
Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for Alzheimer's disease.

Nat Commun. 2022-12-3

[7]
DMT-EV: An Explainable Deep Network for Dimension Reduction.

IEEE Trans Vis Comput Graph. 2024-3

[8]
DeepST: identifying spatial domains in spatial transcriptomics by deep learning.

Nucleic Acids Res. 2022-12-9

[9]
The expanding vistas of spatial transcriptomics.

Nat Biotechnol. 2023-6

[10]
Identifying multicellular spatiotemporal organization of cells with SpaceFlow.

Nat Commun. 2022-7-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索