Agarwal Jay, Shaw Travis W, Schaefer Henry F, Bocarsly Andrew B
†Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States.
‡Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.
Inorg Chem. 2015 Jun 1;54(11):5285-94. doi: 10.1021/acs.inorgchem.5b00233. Epub 2015 May 13.
The design, synthesis, and assessment of a new manganese-centered catalyst for the electrochemical reduction of CO2 is described. The reported species, MnBr(6-(2-hydroxyphenol)-2,2'-bipyridine)(CO)3, includes a ligand framework with a phenolic proton in close proximity to the CO2 binding site, which allows for facile proton-assisted C-O bond cleavage. As a result of this modification, seven times the electrocatalytic current enhancement is observed compared to MnBr(2,2'-bipyridine)(CO)3. Moreover, reduction is possible at only 440 mV of overpotential. Theoretical computations suggest that the entropic contribution to the activation free energy is partially responsible for the increased catalytic activity. Experimental work, including voltammetry and product quantification from controlled potential electrolysis, suggests a key mechanistic role for the phenolic proton in the conversion of CO2 to CO.
本文描述了一种用于二氧化碳电化学还原的新型锰中心催化剂的设计、合成及评估。所报道的化合物MnBr(6-(2-羟基苯酚)-2,2'-联吡啶)(CO)₃包含一个配体框架,其中酚羟基质子紧邻二氧化碳结合位点,这使得质子辅助的C-O键裂解变得容易。由于这种修饰,与MnBr(2,2'-联吡啶)(CO)₃相比,观察到电催化电流增强了七倍。此外,仅在440 mV的过电位下就可以实现还原。理论计算表明,熵对活化自由能的贡献部分导致了催化活性的提高。包括伏安法和控制电位电解产物定量在内的实验工作表明,酚羟基质子在二氧化碳转化为一氧化碳的过程中起关键的机理作用。