Alexandrov Vitaly, Rosso Kevin M
Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
Phys Chem Chem Phys. 2015 Jun 14;17(22):14518-31. doi: 10.1039/c5cp00921a.
Goethite (α-FeOOH) surfaces represent one of the most ubiquitous redox-active interfaces in the environment, playing an important role in biogeochemical metal cycling and contaminant residence in the subsurface. Fe(II)-catalyzed recrystallization of goethite is a fundamental process in this context, but the proposed Fe(II)aq-Fe(III)goethite electron and iron atom exchange mechanism of recrystallization remains poorly understood at the atomic level. We examine the adsorption of aqueous Fe(II) and subsequent interfacial electron transfer (ET) between adsorbed Fe(II) and structural Fe(III) at the (110) and (021) goethite surfaces using density functional theory calculations including Hubbard U corrections (DFT + U) aided by ab initio molecular dynamics simulations. We investigate various surface sites for the adsorption of Fe(2+)(H2O)6 in different coordination environments. Calculated energies for adsorbed complexes at both surfaces favor monodentate complexes with reduced 4- and 5-fold coordination over higher-dentate structures and 6-fold coordination. The hydrolysis of H2O ligands is observed for some pre-ET adsorbed Fe(II) configurations. ET from the adsorbed Fe(II) into the goethite lattice is calculated to be energetically uphill always, but simultaneous proton transfer from H2O ligands of the adsorbed complexes to the surface oxygen species stabilizes post-ET states. We find that surface defects such as oxygen vacancies near the adsorption site also can stabilize post-ET states, enabling the Fe(II)aq-Fe(III)goethite interfacial electron transfer reaction implied from experiments to proceed.
针铁矿(α-FeOOH)表面是环境中最普遍存在的氧化还原活性界面之一,在生物地球化学金属循环和地下污染物滞留中发挥着重要作用。在这种情况下,Fe(II)催化的针铁矿重结晶是一个基本过程,但所提出的重结晶的Fe(II)水合物-Fe(III)针铁矿电子和铁原子交换机制在原子水平上仍知之甚少。我们使用包括哈伯德U校正(DFT + U)的密度泛函理论计算,并辅以从头算分子动力学模拟,研究了针铁矿(110)和(021)表面上水合Fe(II)的吸附以及吸附的Fe(II)与结构Fe(III)之间随后的界面电子转移(ET)。我们研究了在不同配位环境中Fe(2+)(H2O)6吸附的各种表面位点。计算得出的两个表面上吸附络合物的能量表明,与更高齿状结构和六配位相比,具有降低的四配位和五配位的单齿络合物更受青睐。对于一些ET前吸附的Fe(II)构型,观察到了H2O配体的水解。计算得出,从吸附的Fe(II)到针铁矿晶格的电子转移在能量上总是上坡的,但同时从吸附络合物中的H2O配体向表面氧物种的质子转移稳定了ET后的状态。我们发现,吸附位点附近的氧空位等表面缺陷也可以稳定ET后的状态,使实验暗示的Fe(II)水合物-Fe(III)针铁矿界面电子转移反应得以进行。