Carbó Tano Martín, Vilarchao María Eugenia, Szczupak Lidia
Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; and Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Ciudad Universitaria, Buenos Aires, Argentina.
Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; and Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Ciudad Universitaria, Buenos Aires, Argentina
J Neurophysiol. 2015 Jul;114(1):332-40. doi: 10.1152/jn.00170.2015. Epub 2015 May 13.
Low-threshold voltage-activated calcium conductances (LT-VACCs) play a substantial role in shaping the electrophysiological attributes of neurites. We have investigated how these conductances affect synaptic integration in a premotor nonspiking (NS) neuron of the leech nervous system. These cells exhibit an extensive neuritic tree, do not fire Na(+)-dependent spikes, but express an LT-VACC that was sensitive to 250 μM Ni(2+) and 100 μM NNC 55-0396 (NNC). NS neurons responded to excitation of mechanosensory pressure neurons with depolarizing responses for which amplitude was a linear function of the presynaptic firing frequency. NNC decreased these synaptic responses and abolished the concomitant widespread Ca(2+) signals. Coherent with the interpretation that the LT-VACC amplified signals at the postsynaptic level, this conductance also amplified the responses of NS neurons to direct injection of sinusoidal current. Synaptic amplification thus is achieved via a positive feedback in which depolarizing signals activate an LT-VACC that, in turn, boosts these signals. The wide distribution of LT-VACC could support the active propagation of depolarizing signals, turning the complex NS neuritic tree into a relatively compact electrical compartment.
低阈值电压激活钙电导(LT-VACCs)在塑造神经突的电生理特性方面发挥着重要作用。我们研究了这些电导如何影响水蛭神经系统中一个运动前非尖峰(NS)神经元的突触整合。这些细胞具有广泛的神经突树,不产生钠依赖性尖峰,但表达一种对250μM镍离子(Ni²⁺)和100μM NNC 55-0396(NNC)敏感的LT-VACC。NS神经元对机械感觉压力神经元的兴奋产生去极化反应,其幅度是突触前放电频率的线性函数。NNC降低了这些突触反应并消除了伴随的广泛钙信号。与LT-VACC在突触后水平放大信号的解释一致,这种电导也放大了NS神经元对直接注入正弦电流的反应。因此,突触放大是通过一种正反馈实现的,即去极化信号激活LT-VACC,而LT-VACC反过来增强这些信号。LT-VACC的广泛分布可能支持去极化信号的主动传播,将复杂的NS神经突树转变为一个相对紧凑的电隔室。