Suppr超能文献

瞬时和大是来自田螺中枢神经系统的无脊椎动物 T 型通道(LCav3)的关键特征。

Transient and big are key features of an invertebrate T-type channel (LCav3) from the central nervous system of Lymnaea stagnalis.

机构信息

Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

出版信息

J Biol Chem. 2010 Mar 5;285(10):7447-58. doi: 10.1074/jbc.M109.090753. Epub 2010 Jan 7.

Abstract

Here we describe features of the first non-mammalian T-type calcium channel (LCa(v)3) expressed in vitro. This molluscan channel possesses combined biophysical properties that are reminiscent of all mammalian T-type channels. It exhibits T-type features such as "transient" kinetics, but the "tiny" label, usually associated with Ba(2+) conductance, is hard to reconcile with the "bigness" of this channel in many respects. LCa(v)3 is 25% larger than any voltage-gated ion channel expressed to date. It codes for a massive, 322-kDa protein that conducts large macroscopic currents in vitro. LCa(v)3 is also the most abundant Ca(2+) channel transcript in the snail nervous system. A window current at typical resting potentials appears to be at least as large as that reported for mammalian channels. This distant gene provides a unique perspective to analyze the structural, functional, drug binding, and evolutionary aspects of T-type channels.

摘要

在这里,我们描述了首例在体外表达的非哺乳动物 T 型钙通道(LCa(v)3)的特征。这种软体动物通道具有综合的生物物理特性,使人联想到所有哺乳动物 T 型通道。它表现出 T 型特征,如“瞬态”动力学,但“微小”的标签,通常与 Ba(2+)电导相关联,很难与该通道在许多方面的“巨大”相协调。LCa(v)3 比迄今为止表达的任何电压门控离子通道都大 25%。它编码一种巨大的、322kDa 的蛋白质,在体外传导宏观电流。LCa(v)3 也是蜗牛神经系统中表达最多的 Ca(2+)通道转录本。在典型的静息电位下出现的窗口电流似乎至少与哺乳动物通道报告的电流一样大。这个遥远的基因为分析 T 型通道的结构、功能、药物结合和进化方面提供了一个独特的视角。

相似文献

1
Transient and big are key features of an invertebrate T-type channel (LCav3) from the central nervous system of Lymnaea stagnalis.
J Biol Chem. 2010 Mar 5;285(10):7447-58. doi: 10.1074/jbc.M109.090753. Epub 2010 Jan 7.
4
6
Identification of T-type alpha1H Ca2+ channels (Ca(v)3.2) in major pelvic ganglion neurons.
J Neurophysiol. 2002 Jun;87(6):2844-50. doi: 10.1152/jn.2002.87.6.2844.
8
Characterization of the gating brake in the I-II loop of Ca(v)3.2 T-type Ca(2+) channels.
J Biol Chem. 2008 Mar 28;283(13):8136-44. doi: 10.1074/jbc.M708761200. Epub 2008 Jan 24.
9
Evolutionary insights into T-type Ca channel structure, function, and ion selectivity from the homologue.
J Gen Physiol. 2017 Apr 3;149(4):483-510. doi: 10.1085/jgp.201611683. Epub 2017 Mar 22.
10
Effect of mibefradil on sodium and calcium currents.
Am J Physiol Gastrointest Liver Physiol. 2005 Aug;289(2):G249-53. doi: 10.1152/ajpgi.00022.2005. Epub 2005 Mar 24.

引用本文的文献

3
Ion channel profiling of the Lymnaea stagnalis ganglia via transcriptome analysis.
BMC Genomics. 2021 Jan 6;22(1):18. doi: 10.1186/s12864-020-07287-2.
4
Conserved biophysical features of the Ca2 presynaptic Ca channel homologue from the early-diverging animal .
J Biol Chem. 2020 Dec 25;295(52):18553-18578. doi: 10.1074/jbc.RA120.015725. Epub 2020 Oct 23.
7
Eukaryotic Voltage-Gated Sodium Channels: On Their Origins, Asymmetries, Losses, Diversification and Adaptations.
Front Physiol. 2018 Nov 21;9:1406. doi: 10.3389/fphys.2018.01406. eCollection 2018.
8
Evolutionary insights into T-type Ca channel structure, function, and ion selectivity from the homologue.
J Gen Physiol. 2017 Apr 3;149(4):483-510. doi: 10.1085/jgp.201611683. Epub 2017 Mar 22.
9
Ca-α1T, a fly T-type Ca2+ channel, negatively modulates sleep.
Sci Rep. 2015 Dec 9;5:17893. doi: 10.1038/srep17893.
10
Selectivity filters and cysteine-rich extracellular loops in voltage-gated sodium, calcium, and NALCN channels.
Front Physiol. 2015 May 19;6:153. doi: 10.3389/fphys.2015.00153. eCollection 2015.

本文引用的文献

1
Structural determinants of the high affinity extracellular zinc binding site on Cav3.2 T-type calcium channels.
J Biol Chem. 2010 Jan 29;285(5):3271-81. doi: 10.1074/jbc.M109.067660. Epub 2009 Nov 23.
2
Interactions between lipids and voltage sensor paddles detected with tarantula toxins.
Nat Struct Mol Biol. 2009 Oct;16(10):1080-5. doi: 10.1038/nsmb.1679. Epub 2009 Sep 27.
3
Regulation of neuronal T-type calcium channels.
Trends Pharmacol Sci. 2009 Jan;30(1):32-40. doi: 10.1016/j.tips.2008.10.004. Epub 2008 Nov 29.
4
Deconstructing voltage sensor function and pharmacology in sodium channels.
Nature. 2008 Nov 13;456(7219):202-8. doi: 10.1038/nature07473.
5
Alternative splicing within the I-II loop controls surface expression of T-type Ca(v)3.1 calcium channels.
FEBS Lett. 2008 Nov 12;582(27):3765-70. doi: 10.1016/j.febslet.2008.10.013. Epub 2008 Oct 16.
7
Ni2+ block of CaV3.1 (alpha1G) T-type calcium channels.
J Gen Physiol. 2008 Aug;132(2):239-50. doi: 10.1085/jgp.200809988.
8
The relationship between single-channel and whole-cell conductance in the T-type Ca2+ channel CaV3.1.
Biophys J. 2008 Jul;95(2):931-41. doi: 10.1529/biophysj.107.128124. Epub 2008 Mar 28.
9
Characterization of the gating brake in the I-II loop of Ca(v)3.2 T-type Ca(2+) channels.
J Biol Chem. 2008 Mar 28;283(13):8136-44. doi: 10.1074/jbc.M708761200. Epub 2008 Jan 24.
10
T-type Ca2+ channels as therapeutic targets in the nervous system.
Curr Opin Pharmacol. 2008 Feb;8(1):33-41. doi: 10.1016/j.coph.2007.12.003. Epub 2008 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验