Suppr超能文献

稳态视觉诱发电位谐波响应网络的图论分析

The graph theoretical analysis of the SSVEP harmonic response networks.

作者信息

Zhang Yangsong, Guo Daqing, Cheng Kaiwen, Yao Dezhong, Xu Peng

机构信息

School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, China ; Sichuan Provincial Key Laboratory of Robot Technology Used for Special Environment, Southwest University of Science and Technology, Mianyang, China.

Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, #4, Section 2, North JianShe Road, Chengdu, 610054 Sichuan China.

出版信息

Cogn Neurodyn. 2015 Jun;9(3):305-15. doi: 10.1007/s11571-015-9327-3. Epub 2015 Jan 11.

Abstract

Steady-state visually evoked potentials (SSVEP) have been widely used in the neural engineering and cognitive neuroscience researches. Previous studies have indicated that the SSVEP fundamental frequency responses are correlated with the topological properties of the functional networks entrained by the periodic stimuli. Given the different spatial and functional roles of the fundamental frequency and harmonic responses, in this study we further investigated the relation between the harmonic responses and the corresponding functional networks, using the graph theoretical analysis. We found that the second harmonic responses were positively correlated to the mean functional connectivity, clustering coefficient, and global and local efficiencies, while negatively correlated with the characteristic path lengths of the corresponding networks. In addition, similar pattern occurred with the lowest stimulus frequency (6.25 Hz) at the third harmonic responses. These findings demonstrate that more efficient brain networks are related to larger SSVEP responses. Furthermore, we showed that the main connection pattern of the SSVEP harmonic response networks originates from the interactions between the frontal and parietal-occipital regions. Overall, this study may bring new insights into the understanding of the brain mechanisms underlying SSVEP.

摘要

稳态视觉诱发电位(SSVEP)已广泛应用于神经工程和认知神经科学研究中。先前的研究表明,SSVEP基频响应与周期性刺激所诱导的功能网络的拓扑特性相关。鉴于基频和谐波响应在空间和功能上的不同作用,在本研究中,我们使用图论分析进一步研究了谐波响应与相应功能网络之间的关系。我们发现,二次谐波响应与平均功能连接性、聚类系数以及全局和局部效率呈正相关,而与相应网络的特征路径长度呈负相关。此外,在三次谐波响应中,最低刺激频率(6.25 Hz)时也出现了类似的模式。这些发现表明,更高效的脑网络与更大的SSVEP响应相关。此外,我们还表明,SSVEP谐波响应网络的主要连接模式源自额叶与顶枕叶区域之间的相互作用。总体而言,本研究可能为理解SSVEP背后的脑机制带来新的见解。

相似文献

1
The graph theoretical analysis of the SSVEP harmonic response networks.稳态视觉诱发电位谐波响应网络的图论分析
Cogn Neurodyn. 2015 Jun;9(3):305-15. doi: 10.1007/s11571-015-9327-3. Epub 2015 Jan 11.
3
Periodic Visual Stimulation Induces Resting-State Brain Network Reconfiguration.周期性视觉刺激诱发静息态脑网络重构。
Front Comput Neurosci. 2018 Mar 28;12:21. doi: 10.3389/fncom.2018.00021. eCollection 2018.
4
Neural dynamics during repetitive visual stimulation.重复视觉刺激期间的神经动力学
J Neural Eng. 2015 Dec;12(6):066017. doi: 10.1088/1741-2560/12/6/066017. Epub 2015 Oct 19.
5
Prediction of SSVEP-based BCI performance by the resting-state EEG network.基于静息态 EEG 网络预测 SSVEP-BCI 性能。
J Neural Eng. 2013 Dec;10(6):066017. doi: 10.1088/1741-2560/10/6/066017. Epub 2013 Nov 27.

引用本文的文献

2
A survey of brain network analysis by electroencephalographic signals.基于脑电图信号的脑网络分析综述
Cogn Neurodyn. 2022 Feb;16(1):17-41. doi: 10.1007/s11571-021-09689-8. Epub 2021 Jun 14.
7
Periodic Visual Stimulation Induces Resting-State Brain Network Reconfiguration.周期性视觉刺激诱发静息态脑网络重构。
Front Comput Neurosci. 2018 Mar 28;12:21. doi: 10.3389/fncom.2018.00021. eCollection 2018.

本文引用的文献

3
Encoding brain network response to free viewing of videos.对观看视频时大脑网络反应的编码。
Cogn Neurodyn. 2014 Oct;8(5):389-97. doi: 10.1007/s11571-014-9291-3. Epub 2014 Apr 20.
4
A review of EEG and MEG for brainnetome research.用于脑网络组研究的脑电图和脑磁图综述。
Cogn Neurodyn. 2014 Apr;8(2):87-98. doi: 10.1007/s11571-013-9274-9. Epub 2013 Nov 22.
6
Investigation of EEG abnormalities in the early stage of Parkinson's disease.帕金森病早期的脑电图异常研究。
Cogn Neurodyn. 2013 Aug;7(4):351-9. doi: 10.1007/s11571-013-9247-z. Epub 2013 Feb 10.
7
Prediction of SSVEP-based BCI performance by the resting-state EEG network.基于静息态 EEG 网络预测 SSVEP-BCI 性能。
J Neural Eng. 2013 Dec;10(6):066017. doi: 10.1088/1741-2560/10/6/066017. Epub 2013 Nov 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验