Suppr超能文献

帕金森病早期的脑电图异常研究。

Investigation of EEG abnormalities in the early stage of Parkinson's disease.

机构信息

Tianjin Key Laboratory of Information Sensing & Intelligent Control, Tianjin University of Technology and Education, Tianjin, 300222 China ; Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China.

School of Electrical and Automation Engineering, Tianjin University, No. 92 Weijin Road, Tianjin, 300072 China.

出版信息

Cogn Neurodyn. 2013 Aug;7(4):351-9. doi: 10.1007/s11571-013-9247-z. Epub 2013 Feb 10.

Abstract

The objective of the present study was to investigate brain activity abnormalities in the early stage of Parkinson's disease (PD). To achieve this goal, eyes-closed resting state electroencephalography (EEG) signals were recorded from 15 early-stage PD patients and 15 age-matched healthy controls. The AR Burg method and the wavelet packet entropy (WPE) method were used to characterize EEG signals in different frequency bands between the groups, respectively. In the case of the AR Burg method, an increase of relative powers in the δ- and θ-band, and a decrease of relative powers in the α- and β-band were observed for patients compared with controls. For the WPE method, EEG signals from patients showed significant higher entropy over the global frequency domain. Furthermore, WPE in the γ-band of patients was higher than that of controls, while WPE in the δ-, θ-, α- and β-band were all lower. All of these changes in EEG dynamics may represent early signs of cortical dysfunction, which have potential use as biomarkers of PD in the early stage. Our findings may be further used for early intervention and early diagnosis of PD.

摘要

本研究旨在探究帕金森病(PD)早期的大脑活动异常。为此,对 15 名早期 PD 患者和 15 名年龄匹配的健康对照者进行了闭眼静息态脑电图(EEG)信号记录。分别采用 AR Burg 法和小波包熵(WPE)法对两组不同频带的 EEG 信号进行特征化描述。AR Burg 法的结果显示,与对照组相比,患者的 δ-和 θ-频段的相对功率增加,而 α-和 β-频段的相对功率降低。对于 WPE 方法,患者的 EEG 信号在整个频域上表现出显著更高的熵值。此外,患者的 γ 频段的 WPE 高于对照组,而 δ-、θ-、α-和 β-频段的 WPE 均较低。这些 EEG 动力学的变化可能代表皮质功能障碍的早期迹象,可作为 PD 早期的生物标志物。我们的发现可进一步用于 PD 的早期干预和早期诊断。

相似文献

1
Investigation of EEG abnormalities in the early stage of Parkinson's disease.
Cogn Neurodyn. 2013 Aug;7(4):351-9. doi: 10.1007/s11571-013-9247-z. Epub 2013 Feb 10.
2
Complexity of resting-state EEG activity in the patients with early-stage Parkinson's disease.
Cogn Neurodyn. 2017 Apr;11(2):147-160. doi: 10.1007/s11571-016-9415-z. Epub 2016 Oct 20.
3
Emotion processing in Parkinson's disease: an EEG spectral power study.
Int J Neurosci. 2014 Jul;124(7):491-502. doi: 10.3109/00207454.2013.860527. Epub 2013 Nov 22.
5
Investigation of non-linear properties of multichannel EEG in the early stages of Parkinson's disease.
Clin Neurophysiol. 2001 Jan;112(1):38-45. doi: 10.1016/s1388-2457(00)00512-5.
6
Abnormally low sensorimotor α band nonlinearity serves as an effective EEG biomarker of Parkinson's disease.
J Neurophysiol. 2024 Feb 1;131(2):435-445. doi: 10.1152/jn.00272.2023. Epub 2024 Jan 17.
7
Quantitative Electroencephalography as a Biomarker for Cognitive Dysfunction in Parkinson's Disease.
Front Aging Neurosci. 2022 Jan 3;13:804991. doi: 10.3389/fnagi.2021.804991. eCollection 2021.
9
Cognitive decline in Parkinson's disease is associated with reduced complexity of EEG at baseline.
Brain Commun. 2020 Nov 27;2(2):fcaa207. doi: 10.1093/braincomms/fcaa207. eCollection 2020.

引用本文的文献

1
Modeling of whole brain sleep electroencephalogram using deep oscillatory neural network.
Front Neuroinform. 2025 May 14;19:1513374. doi: 10.3389/fninf.2025.1513374. eCollection 2025.
3
Parkinson's disease detection from EEG signal employing autoencoder and RBFNN-based hybrid deep learning framework utilizing power spectral density.
Digit Health. 2024 Nov 12;10:20552076241297355. doi: 10.1177/20552076241297355. eCollection 2024 Jan-Dec.
4
Exploring the complexity of EEG patterns in Parkinson's disease.
Geroscience. 2025 Feb;47(1):837-849. doi: 10.1007/s11357-024-01277-y. Epub 2024 Jul 13.
5
Why so slow? Models of parkinsonian bradykinesia.
Nat Rev Neurosci. 2024 Aug;25(8):573-586. doi: 10.1038/s41583-024-00830-0. Epub 2024 Jun 27.
6
Sex differences in sleep architecture in a mouse model of Huntington's disease.
J Neurosci Res. 2024 Jan;102(1):e25290. doi: 10.1002/jnr.25290.
7
Evaluation of Parkinson's disease early diagnosis using single-channel EEG features and auditory cognitive assessment.
Front Neurol. 2023 Dec 19;14:1273458. doi: 10.3389/fneur.2023.1273458. eCollection 2023.
8
Entropy-Based Machine Learning Model for Fast Diagnosis and Monitoring of Parkinson's Disease.
Sensors (Basel). 2023 Oct 20;23(20):8609. doi: 10.3390/s23208609.

本文引用的文献

1
Cognitive decline in Parkinson's disease is associated with slowing of resting-state brain activity: a longitudinal study.
Neurobiol Aging. 2013 Feb;34(2):408-18. doi: 10.1016/j.neurobiolaging.2012.02.029. Epub 2012 Apr 10.
2
Non-linear classification of heart rate parameters as a biomarker for epileptogenesis.
Epilepsy Res. 2012 Jun;100(1-2):59-66. doi: 10.1016/j.eplepsyres.2012.01.008. Epub 2012 Feb 2.
3
Complexity analysis of resting-state MEG activity in early-stage Parkinson's disease patients.
Ann Biomed Eng. 2011 Dec;39(12):2935-44. doi: 10.1007/s10439-011-0416-0. Epub 2011 Oct 4.
4
Gamma synchrony: towards a translational biomarker for the treatment-resistant symptoms of schizophrenia.
Neuropharmacology. 2012 Mar;62(3):1504-18. doi: 10.1016/j.neuropharm.2011.02.007. Epub 2011 Feb 22.
5
Analysis of EEG signals under flash stimulation for migraine and epileptic patients.
J Med Syst. 2011 Jun;35(3):437-43. doi: 10.1007/s10916-009-9379-1. Epub 2009 Oct 6.
6
Biomarkers for Alzheimer's disease: academic, industry and regulatory perspectives.
Nat Rev Drug Discov. 2010 Jul;9(7):560-74. doi: 10.1038/nrd3115.
8
Increased gamma oscillatory activity in the subthalamic nucleus during tremor in Parkinson's disease patients.
J Neurophysiol. 2009 Feb;101(2):789-802. doi: 10.1152/jn.90837.2008. Epub 2008 Nov 12.
9
Comparison of quantitative EEGs between Parkinson disease and age-adjusted normal controls.
J Clin Neurophysiol. 2008 Dec;25(6):361-6. doi: 10.1097/WNP.0b013e31818f50de.
10
Enhanced frontal low and high frequency power and synchronization in the resting EEG of parkinsonian patients.
Neuroimage. 2008 Jul 1;41(3):985-97. doi: 10.1016/j.neuroimage.2008.03.032. Epub 2008 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验