Suppr超能文献

检测具有相同度分布的无标度网络中内在的不同拓扑结构。

Detecting different topologies immanent in scale-free networks with the same degree distribution.

作者信息

Tsiotas Dimitrios

机构信息

Department of Planning and Regional Development, University of Thessaly, 38334 Volos, Greece

出版信息

Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6701-6706. doi: 10.1073/pnas.1816842116. Epub 2019 Mar 15.

Abstract

The scale-free (SF) property is a major concept in complex networks, and it is based on the definition that an SF network has a degree distribution that follows a power-law (PL) pattern. This paper highlights that not all networks with a PL degree distribution arise through a Barabási-Albert (BA) preferential attachment growth process, a fact that, although evident from the literature, is often overlooked by many researchers. For this purpose, it is demonstrated, with simulations, that established measures of network topology do not suffice to distinguish between BA networks and other (random-like and lattice-like) SF networks with the same degree distribution. Additionally, it is examined whether an existing self-similarity metric proposed for the definition of the SF property is also capable of distinguishing different SF topologies with the same degree distribution. To contribute to this discrimination, this paper introduces a spectral metric, which is shown to be more capable of distinguishing between different SF topologies with the same degree distribution, in comparison with the existing metrics.

摘要

无标度(SF)特性是复杂网络中的一个重要概念,它基于这样的定义:无标度网络具有遵循幂律(PL)模式的度分布。本文强调,并非所有具有幂律度分布的网络都是通过巴拉巴西 - 阿尔伯特(BA)优先连接增长过程产生的,尽管这一事实在文献中很明显,但许多研究人员常常忽视。为此,通过模拟表明,现有的网络拓扑度量不足以区分BA网络和具有相同度分布的其他(类随机和类晶格)无标度网络。此外,还研究了为定义无标度特性而提出的现有自相似性度量是否也能够区分具有相同度分布的不同无标度拓扑。为了有助于这种区分,本文引入了一种谱度量,与现有度量相比,它更能区分具有相同度分布的不同无标度拓扑。

相似文献

2
Derivation of the percolation threshold for the network model of Barabási and Albert.巴拉巴西和阿尔伯特网络模型渗流阈值的推导。
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jun;73(6 Pt 2):066112. doi: 10.1103/PhysRevE.73.066112. Epub 2006 Jun 8.
8
Local versus global knowledge in the Barabási-Albert scale-free network model.巴拉巴西-阿尔伯特无标度网络模型中的局部知识与全局知识
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Mar;69(3 Pt 2):037103. doi: 10.1103/PhysRevE.69.037103. Epub 2004 Mar 31.
9
Weighted scale-free networks in Euclidean space using local selection rule.使用局部选择规则的欧几里得空间中的加权无标度网络。
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 2):036111. doi: 10.1103/PhysRevE.74.036111. Epub 2006 Sep 22.
10
Spread of information and infection on finite random networks.信息与感染在有限随机网络上的传播。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 2):046128. doi: 10.1103/PhysRevE.83.046128. Epub 2011 Apr 28.

引用本文的文献

10
Network stiffness: A new topological property in complex networks.网络弹性:复杂网络中的一个新拓扑性质。
PLoS One. 2019 Jun 18;14(6):e0218477. doi: 10.1371/journal.pone.0218477. eCollection 2019.

本文引用的文献

1
Growing optimal scale-free networks via likelihood.通过似然性生长最优无标度网络。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042801. doi: 10.1103/PhysRevE.91.042801. Epub 2015 Apr 7.
2
Graph embedding and extensions: a general framework for dimensionality reduction.图嵌入与扩展:降维的通用框架
IEEE Trans Pattern Anal Mach Intell. 2007 Jan;29(1):40-51. doi: 10.1109/TPAMI.2007.12.
3
Modularity and community structure in networks.网络中的模块化与群落结构。
Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8577-82. doi: 10.1073/pnas.0601602103. Epub 2006 May 24.
4
Self-similarity of complex networks.复杂网络的自相似性。
Nature. 2005 Jan 27;433(7024):392-5. doi: 10.1038/nature03248.
5
Motifs in brain networks.脑网络中的基序
PLoS Biol. 2004 Nov;2(11):e369. doi: 10.1371/journal.pbio.0020369. Epub 2004 Oct 26.
7
Structure of growing networks with preferential linking.具有优先连接的增长网络结构。
Phys Rev Lett. 2000 Nov 20;85(21):4633-6. doi: 10.1103/PhysRevLett.85.4633.
8
Emergence of scaling in random networks.随机网络中幂律分布的出现。
Science. 1999 Oct 15;286(5439):509-12. doi: 10.1126/science.286.5439.509.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验