Witczak-Krempa William
Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada.
Phys Rev Lett. 2015 May 1;114(17):177201. doi: 10.1103/PhysRevLett.114.177201. Epub 2015 Apr 28.
Quantum critical (QC) phase transitions generally lead to the absence of quasiparticles. The resulting correlated quantum fluid, when thermally excited, displays rich universal dynamics. We establish nonperturbative constraints on the linear-response dynamics of conformal QC systems at finite temperature, in spatial dimensions above 1. Specifically, we analyze the large frequency or momentum asymptotics of observables, which we use to derive powerful sum rules and inequalities. The general results are applied to the O(N) Wilson-Fisher fixed point, describing the QC Ising model when N=1. We focus on the order parameter and scalar susceptibilities, and the dynamical shear viscosity. Connections to simulations, experiments, and gauge theories are made.
量子临界(QC)相变通常会导致准粒子的缺失。由此产生的关联量子流体在热激发时会展现出丰富的普适动力学。我们在空间维度大于1的有限温度下,对共形QC系统的线性响应动力学建立了非微扰约束。具体而言,我们分析了可观测量的大频率或动量渐近行为,并用其推导出强大的求和规则和不等式。将一般结果应用于O(N) 威尔逊-费希尔不动点,当N = 1时描述QC伊辛模型。我们重点关注序参量和标量磁化率,以及动态剪切粘度。并建立了与模拟、实验和规范理论的联系。