Chatterjee Deep, Kudlinzki Denis, Linhard Verena, Saxena Krishna, Schieborr Ulrich, Gande Santosh L, Wurm Jan Philip, Wöhnert Jens, Abele Rupert, Rogov Vladimir V, Dötsch Volker, Osiewacz Heinz D, Sreeramulu Sridhar, Schwalbe Harald
From the Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany.
From the Institute for Organic Chemistry and Chemical Biology, the German Cancer Consortium (DKTK), Heidelberg D-69210, Germany, and the German Cancer Research Center (DKFZ), Heidelberg D-69210, Germany Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany.
J Biol Chem. 2015 Jun 26;290(26):16415-30. doi: 10.1074/jbc.M115.660829. Epub 2015 May 15.
Low levels of reactive oxygen species (ROS) act as important signaling molecules, but in excess they can damage biomolecules. ROS regulation is therefore of key importance. Several polyphenols in general and flavonoids in particular have the potential to generate hydroxyl radicals, the most hazardous among all ROS. However, the generation of a hydroxyl radical and subsequent ROS formation can be prevented by methylation of the hydroxyl group of the flavonoids. O-Methylation is performed by O-methyltransferases, members of the S-adenosyl-l-methionine (SAM)-dependent O-methyltransferase superfamily involved in the secondary metabolism of many species across all kingdoms. In the filamentous fungus Podospora anserina, a well established aging model, the O-methyltransferase (PaMTH1) was reported to accumulate in total and mitochondrial protein extracts during aging. In vitro functional studies revealed flavonoids and in particular myricetin as its potential substrate. The molecular architecture of PaMTH1 and the mechanism of the methyl transfer reaction remain unknown. Here, we report the crystal structures of PaMTH1 apoenzyme, PaMTH1-SAM (co-factor), and PaMTH1-S-adenosyl homocysteine (by-product) co-complexes refined to 2.0, 1.9, and 1.9 Å, respectively. PaMTH1 forms a tight dimer through swapping of the N termini. Each monomer adopts the Rossmann fold typical for many SAM-binding methyltransferases. Structural comparisons between different O-methyltransferases reveal a strikingly similar co-factor binding pocket but differences in the substrate binding pocket, indicating specific molecular determinants required for substrate selection. Furthermore, using NMR, mass spectrometry, and site-directed active site mutagenesis, we show that PaMTH1 catalyzes the transfer of the methyl group from SAM to one hydroxyl group of the myricetin in a cation-dependent manner.
低水平的活性氧(ROS)作为重要的信号分子,但过量时它们会损害生物分子。因此,ROS的调节至关重要。一般来说,几种多酚类物质,特别是黄酮类化合物,有可能产生羟基自由基,这是所有ROS中最具危害性的。然而,黄酮类化合物羟基的甲基化可以防止羟基自由基的产生以及随后的ROS形成。O-甲基化由O-甲基转移酶进行,O-甲基转移酶是S-腺苷-L-甲硫氨酸(SAM)依赖性O-甲基转移酶超家族的成员,参与所有王国中许多物种的次生代谢。在丝状真菌嗜热栖热放线菌(Podospora anserina)这个成熟的衰老模型中,据报道O-甲基转移酶(PaMTH1)在衰老过程中会在总蛋白提取物和线粒体蛋白提取物中积累。体外功能研究表明黄酮类化合物,特别是杨梅素是其潜在底物。PaMTH1的分子结构和甲基转移反应机制仍然未知。在这里,我们报告了PaMTH1脱辅酶、PaMTH1-SAM(辅因子)和PaMTH1-S-腺苷高半胱氨酸(副产物)共复合物的晶体结构,分别精修至2.0 Å、1.9 Å和1.9 Å。PaMTH1通过N末端的交换形成紧密的二聚体。每个单体采用许多SAM结合甲基转移酶典型的Rossmann折叠。不同O-甲基转移酶之间的结构比较显示出惊人相似的辅因子结合口袋,但底物结合口袋存在差异,表明底物选择所需的特定分子决定因素。此外,使用核磁共振、质谱和定点活性位点诱变,我们表明PaMTH1以阳离子依赖的方式催化甲基从SAM转移到杨梅素的一个羟基上。