Suppr超能文献

两种计算机模拟系统在鉴定潜在诱变杂质中的实际应用。

A practical application of two in silico systems for identification of potentially mutagenic impurities.

作者信息

Greene Nigel, Dobo Krista L, Kenyon Michelle O, Cheung Jennifer, Munzner Jennifer, Sobol Zhanna, Sluggett Gregory, Zelesky Todd, Sutter Andreas, Wichard Joerg

机构信息

Computational Sciences CoE, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, CT 06340, USA.

Genetic Toxicology, Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, CT 06340, USA.

出版信息

Regul Toxicol Pharmacol. 2015 Jul;72(2):335-49. doi: 10.1016/j.yrtph.2015.05.008. Epub 2015 May 15.

Abstract

The International Conference on Harmonization (ICH) M7 guidance for the assessment and control of DNA reactive impurities in pharmaceutical products includes the use of in silico prediction systems as part of the hazard identification and risk assessment strategy. This is the first internationally agreed guidance document to include the use of these types of approaches. The guideline requires the use of two complementary approaches, an expert rule-based method and a statistical algorithm. In addition, the guidance states that the output from these computer-based assessments can be reviewed using expert knowledge to provide additional support or resolve conflicting predictions. This approach is designed to maximize the sensitivity for correctly identifying DNA reactive compounds while providing a framework to reduce the number of compounds that need to be synthesized, purified and subsequently tested in an Ames assay. Using a data set of 801 chemicals and pharmaceutical intermediates, we have examined the relative predictive performances of some popular commercial in silico systems that are in common use across the pharmaceutical industry. The overall accuracy of each of these systems was fairly comparable ranging from 68% to 73%; however, the sensitivity of each system (i.e. how many Ames positive compounds are correctly identified) varied much more dramatically from 48% to 68%. We have explored how these systems can be combined under the ICH M7 guidance to enhance the detection of DNA reactive molecules. Finally, using four smaller sets of molecules, we have explored the value of expert knowledge in the review process, especially in cases where the two systems disagreed on their predictions, and the need for care when evaluating the predictions for large data sets.

摘要

国际协调会议(ICH)关于药品中DNA反应性杂质评估和控制的M7指南将计算机预测系统的使用纳入危害识别和风险评估策略之中。这是首份纳入此类方法使用的国际商定指南文件。该指南要求使用两种互补方法,一种基于专家规则的方法和一种统计算法。此外,该指南指出,这些基于计算机评估的输出结果可通过专家知识进行审查,以提供额外支持或解决相互矛盾的预测。此方法旨在最大限度地提高正确识别DNA反应性化合物的灵敏度,同时提供一个框架,以减少需要合成、纯化并随后在艾姆斯试验中进行测试的化合物数量。我们使用一个包含801种化学品和药物中间体的数据集,考察了制药行业普遍使用的一些流行商业计算机系统的相对预测性能。这些系统的总体准确率相当,在68%至73%之间;然而,每个系统的灵敏度(即正确识别出多少艾姆斯试验阳性化合物)差异更为显著,从48%至68%不等。我们探讨了如何在ICH M7指南下将这些系统结合起来,以增强对DNA反应性分子的检测。最后,我们使用四组较小的分子集,探讨了专家知识在审查过程中的价值,特别是在两个系统预测结果不一致的情况下,以及在评估大数据集预测结果时需要谨慎的方面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验