Suppr超能文献

基质小泡:它们是锚定的外泌体吗?

Matrix vesicles: Are they anchored exosomes?

作者信息

Shapiro Irving M, Landis William J, Risbud Makarand V

机构信息

Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.

Department of Polymer Science, College of Polymer Science and Polymer Engineering, University of Akron, OH, USA.

出版信息

Bone. 2015 Oct;79:29-36. doi: 10.1016/j.bone.2015.05.013. Epub 2015 May 15.

Abstract

Numerous studies have documented that matrix vesicles are unique extracellular membrane-bound microparticles that serve as initial sites for mineral formation in the growth plate and most other vertebrate mineralizing tissues. Microparticle generation is not confined to hard tissues, as cells in soft tissues generate similar structures; numerous studies have shown that a common type of extracellular particle, termed an exosome, a product of the endosomal pathway, shares many characteristics of matrix vesicles. Indeed, analyses of size, morphology and lipid and protein content indicate that matrix vesicles and exosomes are homologous structures. Such a possibility impacts our understanding of the biogenesis, processing and function of matrix vesicles (exosomes) in vertebrate hard tissues and explains in part how cells control the earliest stages of mineral deposition. Moreover, since exosomes influence a spectrum of functions, including cell-cell communication, it is suggested that this type of microparticle may provide a mechanism for the transfer of signaling molecules between cells within the growth plate and thereby regulate endochondral bone development and formation.

摘要

大量研究表明,基质小泡是独特的细胞外膜结合微粒,是生长板和大多数其他脊椎动物矿化组织中矿物质形成的起始位点。微粒的产生并不局限于硬组织,因为软组织中的细胞也会产生类似的结构;许多研究表明,一种常见的细胞外颗粒,称为外泌体,是内体途径的产物,与基质小泡具有许多共同特征。事实上,对大小、形态以及脂质和蛋白质含量的分析表明,基质小泡和外泌体是同源结构。这种可能性影响了我们对脊椎动物硬组织中基质小泡(外泌体)的生物发生、加工和功能的理解,并部分解释了细胞如何控制矿物质沉积的最早阶段。此外,由于外泌体影响一系列功能,包括细胞间通讯,因此有人提出,这种类型的微粒可能为生长板内细胞间信号分子的传递提供一种机制,从而调节软骨内骨的发育和形成。

相似文献

1
Matrix vesicles: Are they anchored exosomes?
Bone. 2015 Oct;79:29-36. doi: 10.1016/j.bone.2015.05.013. Epub 2015 May 15.
2
Shedding light on the cell biology of extracellular vesicles.
Nat Rev Mol Cell Biol. 2018 Apr;19(4):213-228. doi: 10.1038/nrm.2017.125. Epub 2018 Jan 17.
4
Mineralization by matrix vesicles.
Scan Electron Microsc. 1984(Pt 2):953-64.
5
Matrix Vesicle-Mediated Mineralization and Potential Applications.
J Dent Res. 2022 Dec;101(13):1554-1562. doi: 10.1177/00220345221103145. Epub 2022 Jun 19.
6
Molecular biology of matrix vesicles.
Clin Orthop Relat Res. 1995 May(314):266-80.
7
Mineral-matrix interactions in bone and cartilage.
Clin Orthop Relat Res. 1992 Aug(281):244-74.
8
Biogenesis and function of extracellular vesicles in cancer.
Pharmacol Ther. 2018 Aug;188:1-11. doi: 10.1016/j.pharmthera.2018.02.013. Epub 2018 Feb 21.
9
Exosomes and extracellular vesicles: the path forward.
Essays Biochem. 2018 May 15;62(2):119-124. doi: 10.1042/EBC20170088.
10
Two types of mineral-related matrix vesicles in the bone mineralization of zebrafish.
Biomed Mater. 2007 Mar;2(1):21-5. doi: 10.1088/1748-6041/2/1/004. Epub 2007 Jan 12.

引用本文的文献

1
BK channel agonists may affect matrix vesicle secretion and ameliorate vascular calcification via autophagy.
Cardiovasc Diagn Ther. 2025 Aug 30;15(4):820-832. doi: 10.21037/cdt-2025-86. Epub 2025 Aug 28.
2
Bioinspired Collagen/κ-Carrageenan 3D Matrix for Modeling of Vascular Calcification.
ACS Biomater Sci Eng. 2025 Aug 11;11(8):5012-5026. doi: 10.1021/acsbiomaterials.5c00754. Epub 2025 Jul 19.
3
Considerations on the Development of Therapeutics in Vascular Calcification.
J Cardiovasc Dev Dis. 2025 May 29;12(6):206. doi: 10.3390/jcdd12060206.
4
Taking a closer look at matrix vesicle biogenesis.
J Bone Miner Res. 2025 Jul 28;40(8):931-945. doi: 10.1093/jbmr/zjaf076.
6
Role of Extracellular Vesicles in the Pathogenesis of Brain Metastasis.
J Extracell Biol. 2025 May 6;4(5):e70051. doi: 10.1002/jex2.70051. eCollection 2025 May.
7
miRNA-based regulation in growth plate cartilage: mechanisms, targets, and therapeutic potential.
Front Endocrinol (Lausanne). 2025 Mar 28;16:1530374. doi: 10.3389/fendo.2025.1530374. eCollection 2025.
8
Three-dimensional visualization of calcification during scale regeneration in goldfish.
Med Mol Morphol. 2025 Mar 6. doi: 10.1007/s00795-025-00427-1.
9
A protein corona modulates the function of mineralization-competent matrix vesicles.
JBMR Plus. 2024 Dec 24;9(2):ziae168. doi: 10.1093/jbmrpl/ziae168. eCollection 2025 Feb.
10
From isolation to detection, advancing insights into endothelial matrix-bound vesicles.
Extracell Vesicle. 2024 Dec;4. doi: 10.1016/j.vesic.2024.100060. Epub 2024 Dec 10.

本文引用的文献

1
Autophagy in osteoblasts is involved in mineralization and bone homeostasis.
Autophagy. 2014;10(11):1965-77. doi: 10.4161/auto.36182.
2
Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles.
Annu Rev Cell Dev Biol. 2014;30:255-89. doi: 10.1146/annurev-cellbio-101512-122326. Epub 2014 Aug 21.
3
Routes and mechanisms of extracellular vesicle uptake.
J Extracell Vesicles. 2014 Aug 4;3. doi: 10.3402/jev.v3.24641. eCollection 2014.
5
Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery.
J Biol Chem. 2014 Aug 8;289(32):22258-67. doi: 10.1074/jbc.M114.588046. Epub 2014 Jun 20.
6
Pre-nucleation clusters as solute precursors in crystallisation.
Chem Soc Rev. 2014 Apr 7;43(7):2348-71. doi: 10.1039/c3cs60451a. Epub 2014 Jan 23.
7
Boning up on autophagy: the role of autophagy in skeletal biology.
Autophagy. 2014 Jan;10(1):7-19. doi: 10.4161/auto.26679. Epub 2013 Nov 11.
8
let-7 and miR-140 microRNAs coordinately regulate skeletal development.
Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):E3291-300. doi: 10.1073/pnas.1302797110. Epub 2013 Aug 12.
10
Exosomes go with the Wnt.
Cell Logist. 2012 Jul 1;2(3):169-173. doi: 10.4161/cl.21981.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验