Bruder Mark, Moo-Young Murray, Chung Duane A, Chou C Perry
Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G1,
Appl Microbiol Biotechnol. 2015 Sep;99(18):7579-88. doi: 10.1007/s00253-015-6611-4. Epub 2015 May 19.
The industrial Gram-positive anaerobe Clostridium acetobutylicum is a valued acetone, butanol, and ethanol (ABE) solvent producer that is able to utilize a vast array of carbon sources in fermentation. When glucose is present in the growth medium, however, C. acetobutylicum, like many Gram-positive organisms, exhibits biphasic growth characteristics in which glucose is used preferentially over secondary carbon sources, a phenomenon known as carbon catabolite repression (CCR). The secondary carbon source is only utilized when the supply of glucose is exhausted, resulting in inefficient use of complex carbon sources. As biofuel production is sought from cheap feedstock, attention has turned to lignocellulosic biomass. Growth of C. acetobutylicum on lignocellulose, however, can be limited by CCR. Here, we present a method to relieve the inhibitory effect of CCR and allow simultaneous utilization of the lignocellulosic sugars of glucose and xylose by C. acetobutylicum. First, we utilized an in vivo gene reporter assay to demonstrate that an identified 14-nucleotide catabolite responsive element (CRE) sequence was sufficient to introduce CCR-mediated transcriptional inhibition, while subsequent mutation of the CRE sequence relieved the inhibitory effect. Next, we demonstrated that C. acetobutylicum harboring a CRE-less plasmid-borne xylose and pentose phosphate pathway operon afforded a 7.5-fold increase in xylose utilization in the presence of glucose as compared to a wild-type CRE plasmid-borne operon, effectively overcoming native CCR effects. The methodology presented here should translate to other members of Clostridium that exhibit CCR to enable simultaneous utilization of a vast array of carbon sources.
工业革兰氏阳性厌氧菌丙酮丁醇梭菌是一种重要的丙酮、丁醇和乙醇(ABE)溶剂生产商,能够在发酵过程中利用多种碳源。然而,当生长培养基中存在葡萄糖时,丙酮丁醇梭菌与许多革兰氏阳性菌一样,表现出双相生长特性,即优先利用葡萄糖而非次要碳源,这种现象称为碳分解代谢物阻遏(CCR)。只有当葡萄糖供应耗尽时,次要碳源才会被利用,导致复杂碳源的利用效率低下。由于人们寻求从廉价原料生产生物燃料,注意力已转向木质纤维素生物质。然而,丙酮丁醇梭菌在木质纤维素上的生长可能受到CCR的限制。在此,我们提出一种方法来减轻CCR的抑制作用,并使丙酮丁醇梭菌能够同时利用葡萄糖和木糖的木质纤维素糖。首先,我们利用体内基因报告分析来证明,一个已鉴定的14核苷酸分解代谢物反应元件(CRE)序列足以引入CCR介导的转录抑制,而随后CRE序列的突变则减轻了抑制作用。接下来,我们证明,与野生型携带CRE的质粒操纵子相比,携带无CRE的质粒载体木糖和戊糖磷酸途径操纵子的丙酮丁醇梭菌在存在葡萄糖的情况下木糖利用率提高了7.5倍,有效地克服了天然CCR效应。这里介绍的方法应该可以应用于其他表现出CCR的梭菌属成员,以实现多种碳源的同时利用。