Suppr超能文献

溶剂生产菌丙酮丁醇梭菌中多效调控因子 CcpA 的分子调节实现葡萄糖和木糖共利用。

Molecular modulation of pleiotropic regulator CcpA for glucose and xylose coutilization by solvent-producing Clostridium acetobutylicum.

机构信息

Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China.

出版信息

Metab Eng. 2015 Mar;28:169-179. doi: 10.1016/j.ymben.2015.01.006. Epub 2015 Jan 28.

Abstract

Efficient cofermentation of hexose and pentose sugars is essential for ABE (Acetone, Butanol and Ethanol) solvents production from lignocellulosic hydrolysates by Clostridium acetobutylicum, an important industrial microorganism. However, utilization of xylose, the predominant pentose present in lignocellulosic feedstocks, by this anaerobe is limited by CCR (Carbon Catabolite Repression) that is mediated by the catabolite control protein A (CcpA). Here, we reported a novel engineering strategy based on CcpA molecular modulation to overcome the defect. Through CcpA mutagenesis and screening, an amino acid residue, valine 302, was shown to be essential for CcpA-dependent CCR in C. acetobutylicum. When this residue was replaced by asparagine (V302N mutation), CCR could be alleviated and a greatly improved xylose utilization was realized. Transcriptional and DNA binding analysis was then used to elucidate the underlying molecular mechanism. Furthermore, the sol genes (ctfA, ctfB and adhE1) were overexpressed, upon the V302N mutation, to accelerate sugar consumption and solvents formation. The resulting strain (824ccpA-V302N-sol) was capable of using over 90% of the total xylose within 72 h when fermenting a mixture of glucose and xylose (30 g/L glucose and 15 g/L xylose), which was much higher than that (30%) of the control strain 824ccpA-ccpA(C). This is the first report that offered an optimized C. acetobutylicum CcpA with alleviated repression on xylose metabolism, yielding a valuable platform host toward ABE solvents production from lignocellulosic biomass.

摘要

从木质纤维素水解物中通过丙酮丁醇梭菌(Clostridium acetobutylicum)生产丙酮丁醇乙醇(ABE)溶剂,需要高效共发酵六碳糖和五碳糖。丙酮丁醇梭菌是一种重要的工业微生物,然而,该厌氧菌利用木质纤维素原料中主要的戊糖木糖的能力受到碳分解代谢物阻遏(CCR)的限制,CCR 是由分解代谢物控制蛋白 A(CcpA)介导的。在这里,我们报道了一种基于 CcpA 分子调节的新型工程策略,以克服这一缺陷。通过 CcpA 诱变和筛选,发现丙氨酸 302 残基对于 C. acetobutylicum 中 CcpA 依赖性 CCR 是必需的。当该残基被天冬酰胺(V302N 突变)取代时,CCR 可以得到缓解,并且实现了木糖利用率的大大提高。随后进行了转录和 DNA 结合分析,以阐明潜在的分子机制。此外,当 V302N 突变时,过表达 sol 基因(ctfA、ctfB 和 adhE1),以加速糖消耗和溶剂形成。与对照菌株 824ccpA-ccpA(C)相比,该突变株(824ccpA-V302N-sol)在发酵葡萄糖和木糖(30 g/L 葡萄糖和 15 g/L 木糖)混合物时,能够在 72 h 内消耗超过 90%的总木糖,这明显高于对照菌株(30%)。这是首次报道优化后的 C. acetobutylicum CcpA 对木糖代谢的抑制作用得到缓解,为木质纤维素生物质生产 ABE 溶剂提供了有价值的平台宿主。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验