Martínez-Pinilla E, Rodríguez-Pérez A I, Navarro G, Aguinaga D, Moreno E, Lanciego J L, Labandeira-García J L, Franco R
Neuroscience Department, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
Biochem Pharmacol. 2015 Jul 15;96(2):131-42. doi: 10.1016/j.bcp.2015.05.006. Epub 2015 May 16.
Identification of G protein-coupled receptors and their specific function in a given neuron becomes essential to better understand the variety of signal transduction mechanisms associated with neurotransmission. We hypothesized that angiotensin II type 1 (AT1) and dopamine D2 receptors form heteromers in the central nervous system, specifically in striatum. Using bioluminescence resonance energy transfer, a direct interaction was demonstrated in cells transfected with the cDNA for the human version of the receptors. Heteromerization did not affect cAMP signaling via D2 receptors but attenuated the coupling of AT1 receptors to Gq. A common feature of heteromers, namely cross-antagonism, i.e. the blockade of the signaling of one receptor by the blockade of the partner receptor, was tested in co-transfected cells. Candesartan, the selective AT1 receptor antagonist, was able to block D2-receptor mediated effects on cAMP levels, MAP kinase activation and β-arrestin recruitment. This effect of candesartan, which constitutes a property for the dopamine-angiotensin receptor heteromer, was similarly occurring in primary cultures of neurons and rat striatal slices. The expression of heteromers in striatum was confirmed by robust labeling using in situ proximity ligation assays. The results indicate that AT1 receptors are expressed in striatum and form heteromers with dopamine D2 receptors that enable drugs selective for the AT1 receptor to alter the functional response of D2 receptors.
鉴定G蛋白偶联受体及其在特定神经元中的特定功能,对于更好地理解与神经传递相关的各种信号转导机制至关重要。我们假设血管紧张素II 1型(AT1)受体和多巴胺D2受体在中枢神经系统中,特别是在纹状体中形成异源二聚体。利用生物发光共振能量转移技术,在转染了人类受体cDNA的细胞中证实了这两种受体之间的直接相互作用。异源二聚化并不影响通过D2受体的cAMP信号传导,但减弱了AT1受体与Gq的偶联。在共转染细胞中测试了异源二聚体的一个共同特征,即交叉拮抗作用,即通过阻断伙伴受体的信号传导来阻断另一个受体的信号传导。选择性AT1受体拮抗剂坎地沙坦能够阻断D2受体介导的对cAMP水平、MAP激酶激活和β-抑制蛋白募集的影响。坎地沙坦的这种作用构成了多巴胺-血管紧张素受体异源二聚体的一种特性,在神经元原代培养物和大鼠纹状体切片中也同样存在。通过原位邻近连接分析的强阳性标记证实了纹状体中异源二聚体的表达。结果表明,AT1受体在纹状体中表达,并与多巴胺D2受体形成异源二聚体,使得对AT1受体有选择性的药物能够改变D2受体的功能反应。