Suppr超能文献

通过加速度计识别脊髓损伤手动轮椅使用者的身体活动类型。

Identifying physical activity type in manual wheelchair users with spinal cord injury by means of accelerometers.

作者信息

García-Massó X, Serra-Añó P, Gonzalez L M, Ye-Lin Y, Prats-Boluda G, Garcia-Casado J

机构信息

Departamento de Didáctica de la Expresión Musical, Plástica y Corporal, Universidad de Valencia, Valencia, Spain.

Departamento de Fisioterapia, Universidad de Valencia, Valencia, Spain.

出版信息

Spinal Cord. 2015 Oct;53(10):772-7. doi: 10.1038/sc.2015.81. Epub 2015 May 19.

Abstract

STUDY DESIGN

This was a cross-sectional study.

OBJECTIVES

The main objective of this study was to develop and test classification algorithms based on machine learning using accelerometers to identify the activity type performed by manual wheelchair users with spinal cord injury (SCI).

SETTING

The study was conducted in the Physical Therapy department and the Physical Education and Sports department of the University of Valencia.

METHODS

A total of 20 volunteers were asked to perform 10 physical activities, lying down, body transfers, moving items, mopping, working on a computer, watching TV, arm-ergometer exercises, passive propulsion, slow propulsion and fast propulsion, while fitted with four accelerometers placed on both wrists, chest and waist. The activities were grouped into five categories: sedentary, locomotion, housework, body transfers and moderate physical activity. Different machine learning algorithms were used to develop individual and group activity classifiers from the acceleration data for different combinations of number and position of the accelerometers.

RESULTS

We found that although the accuracy of the classifiers for individual activities was moderate (55-72%), with higher values for a greater number of accelerometers, grouped activities were correctly classified in a high percentage of cases (83.2-93.6%).

CONCLUSIONS

With only two accelerometers and the quadratic discriminant analysis algorithm we achieved a reasonably accurate group activity recognition system (>90%). Such a system with the minimum of intervention would be a valuable tool for studying physical activity in individuals with SCI.

摘要

研究设计

这是一项横断面研究。

目的

本研究的主要目的是开发并测试基于机器学习的分类算法,该算法使用加速度计来识别脊髓损伤(SCI)的手动轮椅使用者所进行的活动类型。

背景

该研究在瓦伦西亚大学物理治疗系和体育系进行。

方法

总共20名志愿者被要求在佩戴分别置于双腕、胸部和腰部的四个加速度计的情况下进行10项体育活动,即躺下、身体转移、移动物品、拖地、使用电脑工作、看电视、手臂测力计锻炼、被动推进、缓慢推进和快速推进。这些活动被分为五类:久坐、移动、家务、身体转移和适度体育活动。使用不同的机器学习算法,根据加速度计数量和位置的不同组合,从加速度数据中开发个体和群体活动分类器。

结果

我们发现,虽然个体活动分类器的准确率适中(55%-72%),加速度计数量越多准确率越高,但分组活动在大多数情况下被正确分类(83.2%-93.6%)。

结论

仅使用两个加速度计和二次判别分析算法,我们就实现了一个准确率相当高的群体活动识别系统(>90%)。这样一个干预最少的系统将成为研究SCI个体身体活动的宝贵工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验