Suppr超能文献

用于自由生活身体活动分析的基序聚类和数字生物标志物提取

Motif clustering and digital biomarker extraction for free-living physical activity analysis.

作者信息

Liang Ya-Ting, Wang Charlotte

机构信息

Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.

Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, No. 17, Xu-Zhou Road, Taipei, 100025, Taiwan.

出版信息

BioData Min. 2025 Jan 22;18(1):8. doi: 10.1186/s13040-025-00424-1.

Abstract

BACKGROUND

Analyzing free-living physical activity (PA) data presents challenges due to variability in daily routines and the lack of activity labels. Traditional approaches often rely on summary statistics, which may not capture the nuances of individual activity patterns. To address these limitations and advance our understanding of the relationship between PA patterns and health outcomes, we propose a novel motif clustering algorithm that identifies and characterizes specific PA patterns.

METHODS

This paper proposes an elastic distance-based motif clustering algorithm for identifying specific PA patterns (motifs) in free-living PA data. The algorithm segments long-term PA curves into short-term segments and utilizes elastic shape analysis to measure the similarity between activity segments. This enables the discovery of recurring motifs through pattern clustering. Then, functional principal component analysis (FPCA) is then used to extract digital biomarkers from each motif. These digital biomarkers can subsequently be used to explore the relationship between PA and health outcomes of interest.

RESULTS

We demonstrate the efficacy of our method through three real-world applications. Results show that digital biomarkers derived from these motifs effectively capture the association between PA patterns and disease outcomes, improving the accuracy of patient classification.

CONCLUSIONS

This study introduced a novel approach to analyzing free-living PA data by identifying and characterizing specific activity patterns (motifs). The derived digital biomarkers provide a more nuanced understanding of PA and its impact on health, with potential applications in personalized health assessment and disease detection, offering a promising future for healthcare.

摘要

背景

由于日常生活的变异性以及缺乏活动标签,分析自由生活中的身体活动(PA)数据面临挑战。传统方法通常依赖于汇总统计,这可能无法捕捉个体活动模式的细微差别。为了克服这些局限性并加深我们对PA模式与健康结果之间关系的理解,我们提出了一种新颖的基序聚类算法,用于识别和表征特定的PA模式。

方法

本文提出了一种基于弹性距离的基序聚类算法,用于在自由生活的PA数据中识别特定的PA模式(基序)。该算法将长期PA曲线分割为短期片段,并利用弹性形状分析来测量活动片段之间的相似性。这使得能够通过模式聚类发现反复出现的基序。然后,使用功能主成分分析(FPCA)从每个基序中提取数字生物标志物。这些数字生物标志物随后可用于探索PA与感兴趣的健康结果之间的关系。

结果

我们通过三个实际应用证明了我们方法的有效性。结果表明,从这些基序中衍生的数字生物标志物有效地捕捉了PA模式与疾病结果之间的关联,提高了患者分类的准确性。

结论

本研究引入了一种新颖的方法,通过识别和表征特定的活动模式(基序)来分析自由生活的PA数据。衍生的数字生物标志物提供了对PA及其对健康影响的更细致入微的理解,在个性化健康评估和疾病检测中具有潜在应用,为医疗保健带来了充满希望的未来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdf5/11753168/305f2b50b08f/13040_2025_424_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验