Makarov Vadim, Neres João, Hartkoorn Ruben C, Ryabova Olga B, Kazakova Elena, Šarkan Michal, Huszár Stanislav, Piton Jérémie, Kolly Gaëlle S, Vocat Anthony, Conroy Trent M, Mikušová Katarína, Cole Stewart T
More Medicines for Tuberculosis Consortium‡ A. N. Bakh Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia.
More Medicines for Tuberculosis Consortium‡ Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Antimicrob Agents Chemother. 2015 Aug;59(8):4446-52. doi: 10.1128/AAC.00778-15. Epub 2015 May 18.
8-Nitro-benzothiazinones (BTZs), such as BTZ043 and PBTZ169, inhibit decaprenylphosphoryl-β-d-ribose 2'-oxidase (DprE1) and display nanomolar bactericidal activity against Mycobacterium tuberculosis in vitro. Structure-activity relationship (SAR) studies revealed the 8-nitro group of the BTZ scaffold to be crucial for the mechanism of action, which involves formation of a semimercaptal bond with Cys387 in the active site of DprE1. To date, substitution of the 8-nitro group has led to extensive loss of antimycobacterial activity. Here, we report the synthesis and characterization of the pyrrole-benzothiazinones PyrBTZ01 and PyrBTZ02, non-nitro-benzothiazinones that retain significant antimycobacterial activity, with MICs of 0.16 μg/ml against M. tuberculosis. These compounds inhibit DprE1 with 50% inhibitory concentration (IC50) values of <8 μM and present favorable in vitro absorption-distribution-metabolism-excretion/toxicity (ADME/T) and in vivo pharmacokinetic profiles. The most promising compound, PyrBTZ01, did not show efficacy in a mouse model of acute tuberculosis, suggesting that BTZ-mediated killing through DprE1 inhibition requires a combination of both covalent bond formation and compound potency.
8-硝基苯并噻嗪酮(BTZs),如BTZ043和PBTZ169,可抑制癸异戊二烯基磷酸化-β-D-核糖2'-氧化酶(DprE1),并在体外对结核分枝杆菌显示出纳摩尔级的杀菌活性。构效关系(SAR)研究表明,BTZ支架的8-硝基对于作用机制至关重要,该作用机制涉及与DprE1活性位点的半胱氨酸387形成半硫醇键。迄今为止,8-硝基的取代已导致抗分枝杆菌活性的大量丧失。在此,我们报告了吡咯-苯并噻嗪酮PyrBTZ01和PyrBTZ02的合成与表征,它们是保留显著抗分枝杆菌活性的非硝基苯并噻嗪酮,对结核分枝杆菌的最低抑菌浓度(MIC)为0.16μg/ml。这些化合物抑制DprE1的50%抑制浓度(IC50)值<8μM,并呈现出良好的体外吸收-分布-代谢-排泄/毒性(ADME/T)和体内药代动力学特征。最有前景的化合物PyrBTZ01在急性结核病小鼠模型中未显示出疗效,这表明通过抑制DprE1由BTZ介导的杀伤需要共价键形成和化合物效力两者的结合。