Suppr超能文献

识别神经性厌食症的神经解剖学特征:一种多变量机器学习方法。

Identifying neuroanatomical signatures of anorexia nervosa: a multivariate machine learning approach.

作者信息

Lavagnino L, Amianto F, Mwangi B, D'Agata F, Spalatro A, Zunta-Soares G B, Abbate Daga G, Mortara P, Fassino S, Soares J C

机构信息

UT Center of Excellence on Mood Disorders,Department of Psychiatry and Behavioral Sciences,UT Houston Medical School,Houston,TX,USA.

Department of Neuroscience,AOU San Giovanni Battista,Turin,Italy.

出版信息

Psychol Med. 2015 Oct;45(13):2805-12. doi: 10.1017/S0033291715000768. Epub 2015 May 20.

Abstract

BACKGROUND

There are currently no neuroanatomical biomarkers of anorexia nervosa (AN) available to make clinical inferences at an individual subject level. We present results of a multivariate machine learning (ML) approach utilizing structural neuroanatomical scan data to differentiate AN patients from matched healthy controls at an individual subject level.

METHOD

Structural neuroimaging scans were acquired from 15 female patients with AN (age = 20, s.d. = 4 years) and 15 demographically matched female controls (age = 22, s.d. = 3 years). Neuroanatomical volumes were extracted using the FreeSurfer software and input into the Least Absolute Shrinkage and Selection Operator (LASSO) multivariate ML algorithm. LASSO was 'trained' to identify 'novel' individual subjects as either AN patients or healthy controls. Furthermore, the model estimated the probability that an individual subject belonged to the AN group based on an individual scan.

RESULTS

The model correctly predicted 25 out of 30 subjects, translating into 83.3% accuracy (sensitivity 86.7%, specificity 80.0%) (p < 0.001; χ 2 test). Six neuroanatomical regions (cerebellum white matter, choroid plexus, putamen, accumbens, the diencephalon and the third ventricle) were found to be relevant in distinguishing individual AN patients from healthy controls. The predicted probabilities showed a linear relationship with drive for thinness clinical scores (r = 0.52, p < 0.005) and with body mass index (BMI) (r = -0.45, p = 0.01).

CONCLUSIONS

The model achieved a good predictive accuracy and drive for thinness showed a strong neuroanatomical signature. These results indicate that neuroimaging scans coupled with ML techniques have the potential to provide information at an individual subject level that might be relevant to clinical outcomes.

摘要

背景

目前尚无神经性厌食症(AN)的神经解剖学生物标志物可用于在个体水平上进行临床推断。我们展示了一种多变量机器学习(ML)方法的结果,该方法利用结构性神经解剖扫描数据在个体水平上区分AN患者和匹配的健康对照。

方法

对15名患有AN的女性患者(年龄 = 20岁,标准差 = 4岁)和15名人口统计学匹配的女性对照(年龄 = 22岁,标准差 = 3岁)进行结构性神经成像扫描。使用FreeSurfer软件提取神经解剖体积,并将其输入到最小绝对收缩和选择算子(LASSO)多变量ML算法中。LASSO经过“训练”以将“新的”个体受试者识别为AN患者或健康对照。此外,该模型根据个体扫描估计个体受试者属于AN组的概率。

结果

该模型在30名受试者中正确预测了25名,准确率为83.3%(敏感性86.7%,特异性80.0%)(p < 0.001;χ²检验)。发现六个神经解剖区域(小脑白质、脉络丛、壳核、伏隔核、间脑和第三脑室)在区分个体AN患者和健康对照方面具有相关性。预测概率与瘦身驱动力临床评分呈线性关系(r = 0.52,p < 0.005),与体重指数(BMI)呈线性关系(r = -0.45,p = 0.01)。

结论

该模型具有良好的预测准确性,且瘦身驱动力显示出强烈的神经解剖学特征。这些结果表明,神经成像扫描与ML技术相结合有潜力在个体水平上提供可能与临床结果相关的信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验