Suppr超能文献

饮食失调中的神经影像学与机器学习:一项系统综述

Neuroimaging and machine learning in eating disorders: a systematic review.

作者信息

Monaco Francesco, Vignapiano Annarita, Di Gruttola Benedetta, Landi Stefania, Panarello Ernesta, Malvone Raffaele, Palermo Stefania, Marenna Alessandra, Collantoni Enrico, Celia Giovanna, Di Stefano Valeria, Meneguzzo Paolo, D'Angelo Martina, Corrivetti Giulio, Steardo Luca

机构信息

Department of Mental Health, Azienda Sanitaria Locale Salerno, Salerno, Italy.

European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy.

出版信息

Eat Weight Disord. 2025 Jun 1;30(1):46. doi: 10.1007/s40519-025-01757-w.

Abstract

PURPOSE

Eating disorders (EDs), including anorexia nervosa (AN), bulimia nervosa (BN), and binge eating disorder (BED), are complex psychiatric conditions with high morbidity and mortality. Neuroimaging and machine learning (ML) represent promising approaches to improve diagnosis, understand pathophysiological mechanisms, and predict treatment response. This systematic review aimed to evaluate the application of ML techniques to neuroimaging data in EDs.

METHODS

Following PRISMA guidelines (PROSPERO registration: CRD42024628157), we systematically searched PubMed and APA PsycINFO for studies published between 2014 and 2024. Inclusion criteria encompassed human studies using neuroimaging and ML methods applied to AN, BN, or BED. Data extraction focused on study design, imaging modalities, ML techniques, and performance metrics. Quality was assessed using the GRADE framework and the ROBINS-I tool.

RESULTS

Out of 185 records screened, 5 studies met the inclusion criteria. Most applied support vector machines (SVMs) or other supervised ML models to structural MRI or diffusion tensor imaging data. Cortical thickness alterations in AN and diffusion-based metrics effectively distinguished ED subtypes. However, all studies were observational, heterogeneous, and at moderate to serious risk of bias. Sample sizes were small, and external validation was lacking.

CONCLUSION

ML applied to neuroimaging shows potential for improving ED characterization and outcome prediction. Nevertheless, methodological limitations restrict generalizability. Future research should focus on larger, multicenter, and multimodal studies to enhance clinical applicability.

LEVEL OF EVIDENCE

Level IV, multiple observational studies with methodological heterogeneity and moderate to serious risk of bias.

摘要

目的

饮食失调(EDs),包括神经性厌食症(AN)、神经性贪食症(BN)和暴饮暴食症(BED),是具有高发病率和死亡率的复杂精神疾病。神经影像学和机器学习(ML)是改善诊断、理解病理生理机制以及预测治疗反应的有前景的方法。本系统评价旨在评估ML技术在饮食失调神经影像学数据中的应用。

方法

遵循PRISMA指南(PROSPERO注册号:CRD42024628157),我们系统检索了PubMed和APA PsycINFO中2014年至2024年发表的研究。纳入标准包括使用神经影像学和应用于AN、BN或BED的ML方法的人体研究。数据提取集中在研究设计、成像方式、ML技术和性能指标上。使用GRADE框架和ROBINS-I工具评估质量。

结果

在筛选的185条记录中,5项研究符合纳入标准。大多数研究将支持向量机(SVM)或其他监督ML模型应用于结构MRI或扩散张量成像数据。AN中的皮质厚度改变和基于扩散的指标有效地区分了ED亚型。然而,所有研究均为观察性研究,存在异质性,且存在中度至严重的偏倚风险。样本量小,缺乏外部验证。

结论

应用于神经影像学的ML显示出改善饮食失调特征和结果预测的潜力。然而,方法学上的局限性限制了其普遍性。未来的研究应集中在更大规模、多中心和多模态的研究上,以提高临床适用性。

证据水平

IV级,多项观察性研究,存在方法学异质性和中度至严重的偏倚风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f46/12127231/4d0c46e8dee8/40519_2025_1757_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验