Suppr超能文献

预测神经性厌食症的长期预后:基于体重恢复不同阶段脑结构的机器学习分析。

Predicting long-term outcome in anorexia nervosa: a machine learning analysis of brain structure at different stages of weight recovery.

机构信息

Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.

Eating Disorder Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.

出版信息

Psychol Med. 2023 Dec;53(16):7827-7836. doi: 10.1017/S0033291723001861. Epub 2023 Aug 9.

Abstract

BACKGROUND

Anorexia nervosa (AN) is characterized by sizable, widespread gray matter (GM) reductions in the acutely underweight state. However, evidence for persistent alterations after weight-restoration has been surprisingly scarce despite high relapse rates, frequent transitions to other psychiatric disorders, and generally unfavorable outcome. While most studies investigated brain regions separately (univariate analysis), psychiatric disorders can be conceptualized as brain network disorders characterized by multivariate alterations with only subtle local effects. We tested for persistent multivariate structural brain alterations in weight-restored individuals with a history of AN, investigated their putative biological substrate and relation with 1-year treatment outcome.

METHODS

We trained machine learning models on regional GM measures to classify healthy controls (HC) ( = 289) from individuals at three stages of AN: underweight patients starting intensive treatment ( = 165, used as baseline), patients after partial weight-restoration ( = 115), and former patients after stable and full weight-restoration ( = 89). Alterations after weight-restoration were related to treatment outcome and characterized both anatomically and functionally.

RESULTS

Patients could be classified from HC when underweight (ROC-AUC = 0.90) but also after partial weight-restoration (ROC-AUC = 0.64). Alterations after partial weight-restoration were more pronounced in patients with worse outcome and were not detected in long-term weight-recovered individuals, i.e. those with favorable outcome. These alterations were more pronounced in regions with greater functional connectivity, not merely explained by body mass index, and even increases in cortical thickness were observed (insula, lateral orbitofrontal, temporal pole).

CONCLUSIONS

Analyzing persistent multivariate brain structural alterations after weight-restoration might help to develop personalized interventions after discharge from inpatient treatment.

摘要

背景

神经性厌食症(AN)的特征是在极度消瘦状态下存在大量广泛的灰质(GM)减少。然而,尽管复发率高、频繁向其他精神障碍转变以及总体预后不佳,在体重恢复后仍存在持续改变的证据却令人惊讶地缺乏。虽然大多数研究分别研究了脑区(单变量分析),但精神障碍可以被概念化为以多变量改变为特征的脑网络障碍,只有细微的局部效应。我们在有 AN 病史的体重恢复个体中测试了持续的多变量结构脑改变,研究了它们潜在的生物学基础以及与 1 年治疗结果的关系。

方法

我们使用机器学习模型对区域性 GM 测量值进行训练,以将健康对照组(HC)(n=289)与 AN 的三个阶段的个体进行分类:开始强化治疗的体重不足患者(n=165,用作基线)、部分体重恢复的患者(n=115)和稳定且完全体重恢复的前患者(n=89)。体重恢复后的改变与治疗结果有关,并在解剖学和功能上进行了特征描述。

结果

当患者处于消瘦状态时(ROC-AUC=0.90),但也在部分体重恢复后(ROC-AUC=0.64)可以从 HC 中分类。部分体重恢复后的改变在预后较差的患者中更为明显,而在长期体重恢复的个体中则未检测到,即那些预后良好的患者。这些改变在具有更大功能连接的区域更为明显,不仅仅是由体重指数解释的,甚至观察到皮质厚度增加(岛叶、外侧眶额、颞极)。

结论

分析体重恢复后持续的多变量脑结构改变可能有助于在住院治疗出院后开发个性化干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a2f/10758339/1e6289b39283/S0033291723001861_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验