Bloom Jesse D
Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, 98109, WA, USA.
BMC Bioinformatics. 2015 May 20;16:168. doi: 10.1186/s12859-015-0590-4.
Deep mutational scanning is a technique to estimate the impacts of mutations on a gene by using deep sequencing to count mutations in a library of variants before and after imposing a functional selection. The impacts of mutations must be inferred from changes in their counts after selection.
I describe a software package, dms_tools, to infer the impacts of mutations from deep mutational scanning data using a likelihood-based treatment of the mutation counts. I show that dms_tools yields more accurate inferences on simulated data than simply calculating ratios of counts pre- and post-selection. Using dms_tools, one can infer the preference of each site for each amino acid given a single selection pressure, or assess the extent to which these preferences change under different selection pressures. The preferences and their changes can be intuitively visualized with sequence-logo-style plots created using an extension to weblogo.
dms_tools implements a statistically principled approach for the analysis and subsequent visualization of deep mutational scanning data.
深度突变扫描是一种通过深度测序来估计突变对基因影响的技术,即在施加功能选择之前和之后对一组变体文库中的突变进行计数。突变的影响必须从选择后其计数的变化中推断出来。
我描述了一个软件包dms_tools,它使用基于似然性的突变计数处理方法,从深度突变扫描数据中推断突变的影响。我表明,与简单计算选择前后的计数比率相比,dms_tools对模拟数据的推断更准确。使用dms_tools,在给定单一选择压力的情况下,可以推断每个位点对每种氨基酸的偏好,或者评估在不同选择压力下这些偏好的变化程度。这些偏好及其变化可以使用对weblogo的扩展创建的序列标志样式图直观地可视化。
dms_tools实现了一种基于统计学原理的方法,用于深度突变扫描数据的分析和后续可视化。