Suppr超能文献

RNA测序和网络分析揭示了经转化生长因子-β处理的肺癌细胞系中的相互作用通路。

RNA-Seq and Network Analysis Revealed Interacting Pathways in TGF-β-Treated Lung Cancer Cell Lines.

作者信息

Li Yan, Rouhi Omid, Chen Hankui, Ramirez Rolando, Borgia Jeffrey A, Deng Youping

机构信息

Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA.

Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA.

出版信息

Cancer Inform. 2015 Apr 1;13(Suppl 5):129-40. doi: 10.4137/CIN.S14073. eCollection 2014.

Abstract

Whole transcriptome shotgun sequencing (RNA-Seq) is a useful tool for analyzing the transcriptome of a biological sample. With appropriate statistical and bioinformatic processing, this platform is capable of identifying significant differences in gene expression within the transcriptome and permits pathway and network analyses to determine how these genes interact biologically. In this study, we examined gene expression in two lung adenocarcinoma cell lines (H358 and A459) that were treated with transforming growth factor-β (TGF-β) as a model for induction of the epithelial-to-mesenchymal transition (EMT), commonly associated with disease progression. We performed this study in order to illustrate a workflow for identifying interesting genes and processes that are regulated early in EMT and to determine their gene pathway/network relationships and regulation. With this, we identified 137 upregulated and 32 downregulated genes common to both cell lines after TGF-β treatment that represent components of multiple canonical pathways and biological networks associated with the induction of EMT. These findings were also verified against reposited Affymetrix U133a expression profiles from multiple trials examining metastatic progression in patient cohorts (n = 731 total) to further establish the clinical relevance and translational significance of the model system. Together, these findings help validate the relevance of the TGF-β model for the study of EMT and provide new insights into early events in EMT.

摘要

全转录组鸟枪法测序(RNA-Seq)是分析生物样本转录组的一种有用工具。通过适当的统计和生物信息学处理,该平台能够识别转录组内基因表达的显著差异,并允许进行通路和网络分析,以确定这些基因在生物学上是如何相互作用的。在本研究中,我们检测了两种肺腺癌细胞系(H358和A459)中的基因表达,这两种细胞系用转化生长因子-β(TGF-β)处理,作为诱导上皮-间质转化(EMT)的模型,EMT通常与疾病进展相关。我们进行这项研究是为了阐明一种工作流程,用于识别在EMT早期受到调控的有趣基因和过程,并确定它们的基因通路/网络关系及调控方式。通过这项研究,我们在TGF-β处理后,在两种细胞系中均鉴定出137个上调基因和32个下调基因,这些基因代表了与EMT诱导相关的多个经典通路和生物网络的组成部分。这些发现还与来自多项研究患者队列转移进展的试验(总共n = 731)中存档的Affymetrix U133a表达谱进行了验证,以进一步确立该模型系统的临床相关性和转化意义。总之,这些发现有助于验证TGF-β模型在EMT研究中的相关性,并为EMT早期事件提供新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caf1/4384765/013422971b95/cin-suppl.5-2014-129f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验