Suppr超能文献

一种用于分类数据的基于新型人工蜂群的聚类算法。

A novel artificial bee colony based clustering algorithm for categorical data.

作者信息

Ji Jinchao, Pang Wei, Zheng Yanlin, Wang Zhe, Ma Zhiqiang

机构信息

School of Computer Science and Information Technology, Northeast Normal University, Changchun, China; Key Lab of Intelligent Information Processing of Jilin Universities, Northeast Normal University, Changchun, China; Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China.

School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, United Kingdom.

出版信息

PLoS One. 2015 May 20;10(5):e0127125. doi: 10.1371/journal.pone.0127125. eCollection 2015.

Abstract

Data with categorical attributes are ubiquitous in the real world. However, existing partitional clustering algorithms for categorical data are prone to fall into local optima. To address this issue, in this paper we propose a novel clustering algorithm, ABC-K-Modes (Artificial Bee Colony clustering based on K-Modes), based on the traditional k-modes clustering algorithm and the artificial bee colony approach. In our approach, we first introduce a one-step k-modes procedure, and then integrate this procedure with the artificial bee colony approach to deal with categorical data. In the search process performed by scout bees, we adopt the multi-source search inspired by the idea of batch processing to accelerate the convergence of ABC-K-Modes. The performance of ABC-K-Modes is evaluated by a series of experiments in comparison with that of the other popular algorithms for categorical data.

摘要

具有分类属性的数据在现实世界中无处不在。然而,现有的用于分类数据的划分聚类算法容易陷入局部最优。为了解决这个问题,在本文中,我们基于传统的k-模式聚类算法和人工蜂群方法,提出了一种新颖的聚类算法,即ABC-K-Modes(基于人工蜂群的K-模式聚类)。在我们的方法中,我们首先引入一个单步k-模式过程,然后将此过程与人工蜂群方法相结合来处理分类数据。在侦察蜂执行的搜索过程中,我们采用受批处理思想启发的多源搜索来加速ABC-K-Modes的收敛。通过一系列实验,将ABC-K-Modes的性能与其他流行的分类数据算法的性能进行了比较评估。

相似文献

5
A Transition Control Mechanism for Artificial Bee Colony (ABC) Algorithm.人工蜂群(ABC)算法的转换控制机制。
Comput Intell Neurosci. 2019 Apr 1;2019:5012313. doi: 10.1155/2019/5012313. eCollection 2019.
8
A hybrid monkey search algorithm for clustering analysis.一种用于聚类分析的混合猴子搜索算法。
ScientificWorldJournal. 2014 Mar 4;2014:938239. doi: 10.1155/2014/938239. eCollection 2014.
9
On the impact of dissimilarity measure in k-modes clustering algorithm.关于差异度量在k-模式聚类算法中的影响。
IEEE Trans Pattern Anal Mach Intell. 2007 Mar;29(3):503-7. doi: 10.1109/TPAMI.2007.53.

本文引用的文献

2
Genetic K-means algorithm.遗传K均值算法
IEEE Trans Syst Man Cybern B Cybern. 1999;29(3):433-9. doi: 10.1109/3477.764879.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验