Suppr超能文献

用于 - 模式聚类算法的全局关系差异度量

A Global-Relationship Dissimilarity Measure for the -Modes Clustering Algorithm.

作者信息

Zhou Hongfang, Zhang Yihui, Liu Yibin

机构信息

School of Computer Science and Engineering, Xi'an University of Technology, Xi'an 710048, China.

出版信息

Comput Intell Neurosci. 2017;2017:3691316. doi: 10.1155/2017/3691316. Epub 2017 Mar 28.

Abstract

The -modes clustering algorithm has been widely used to cluster categorical data. In this paper, we firstly analyzed the -modes algorithm and its dissimilarity measure. Based on this, we then proposed a novel dissimilarity measure, which is named as GRD. GRD considers not only the relationships between the object and all cluster modes but also the differences of different attributes. Finally the experiments were made on four real data sets from UCI. And the corresponding results show that GRD achieves better performance than two existing dissimilarity measures used in -modes and Cao's algorithms.

摘要

-模式聚类算法已被广泛用于对分类数据进行聚类。在本文中,我们首先分析了-模式算法及其不相似度度量。在此基础上,我们提出了一种新的不相似度度量,命名为GRD。GRD不仅考虑了对象与所有聚类模式之间的关系,还考虑了不同属性的差异。最后,我们对来自UCI的四个真实数据集进行了实验。相应结果表明,GRD比-模式算法和曹算法中使用的两种现有不相似度度量具有更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4490/5387825/e4d18d8a522e/CIN2017-3691316.pseudo.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验