Suppr超能文献

一种用于超声阵列成像的旁瓣抑制近场波束形成方法。

A sidelobe suppressing near-field beamforming approach for ultrasound array imaging.

作者信息

He Zhengyao, Zheng Fan, Ma Yuanliang, Kim Hyung Ham, Zhou Qifa, Shung K Kirk

机构信息

Institute of Acoustic Engineering, Northwestern Polytechnical University, Xi'an 710072, China.

Department of Biomedical Engineering and National Institutes of Health Transducer Resource Center, University of Southern California, Los Angeles, California 90089, USA.

出版信息

J Acoust Soc Am. 2015 May;137(5):2785-90. doi: 10.1121/1.4919318.

Abstract

A method is proposed to suppress sidelobe level for near-field beamforming in ultrasound array imaging. An optimization problem is established, and the second-order cone algorithm is used to solve the problem to obtain the weight vector based on the near-field response vector of a transducer array. The weight vector calculation results show that the proposed method can be used to suppress the sidelobe level of the near-field beam pattern of a transducer array. Ultrasound images following the application of weight vector to the array of a wire phantom are obtained by simulation with the Field II program, and the images of a wire phantom and anechoic sphere phantom are obtained experimentally with a 64-element 26 MHz linear phased array. The experimental and simulation results agree well and show that the proposed method can achieve a much lower sidelobe level than the conventional delay and sum beamforming method. The wire phantom image is demonstrated to focus much better and the contrast of the anechoic sphere phantom image improved by applying the proposed beamforming method.

摘要

提出了一种抑制超声阵列成像中近场波束形成旁瓣电平的方法。建立了一个优化问题,并使用二阶锥算法来解决该问题,以基于换能器阵列的近场响应向量获得权重向量。权重向量计算结果表明,该方法可用于抑制换能器阵列近场波束图的旁瓣电平。通过使用Field II程序进行模拟,得到了将权重向量应用于线阵模型阵列后的超声图像,并使用64阵元26 MHz线性相控阵通过实验获得了线阵模型和无回声球体模型的图像。实验和模拟结果吻合良好,表明该方法能实现比传统延迟求和波束形成方法低得多的旁瓣电平。通过应用所提出的波束形成方法,线阵模型图像显示聚焦效果更好,无回声球体模型图像的对比度得到改善。

相似文献

1
A sidelobe suppressing near-field beamforming approach for ultrasound array imaging.
J Acoust Soc Am. 2015 May;137(5):2785-90. doi: 10.1121/1.4919318.
2
Optimization of acoustic emitted field of transducer array for ultrasound imaging.
Biomed Mater Eng. 2014;24(1):1201-8. doi: 10.3233/BME-130921.
3
Passive acoustic mapping with absolute time-of-flight information and delay-multiply-sum beamforming.
Med Phys. 2023 Apr;50(4):2323-2335. doi: 10.1002/mp.16248. Epub 2023 Feb 7.
5
Optimization of transmitting beam patterns of a conformal transducer array.
J Acoust Soc Am. 2008 May;123(5):2563-9. doi: 10.1121/1.2897046.
6
Gated Transmit and Fresnel-Based Receive Beamforming With a Phased Array for Low-Cost Ultrasound Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jun;68(6):2183-2192. doi: 10.1109/TUFFC.2021.3062850. Epub 2021 May 25.
7
Shape Estimation Algorithm for Ultrasound Imaging by Flexible Array Transducer.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Nov;67(11):2345-2353. doi: 10.1109/TUFFC.2020.3004052. Epub 2020 Jun 22.
8
Benefits of minimum-variance beamforming in medical ultrasound imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Sep;56(9):1868-79. doi: 10.1109/TUFFC.2009.1263.
9
Phased-array vector velocity estimation using transverse oscillations.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Dec;59(12):2662-75. doi: 10.1109/TUFFC.2012.2507.
10
Sparsity-based beamforming to enhance two-dimensional linear-array photoacoustic tomography.
Ultrasonics. 2019 Jul;96:55-63. doi: 10.1016/j.ultras.2019.03.010. Epub 2019 Mar 15.

引用本文的文献

2
A Doherty Power Amplifier for Ultrasound Instrumentation.
Sensors (Basel). 2023 Feb 21;23(5):2406. doi: 10.3390/s23052406.
3
Pre-Matching Circuit for High-Frequency Ultrasound Transducers.
Sensors (Basel). 2022 Nov 16;22(22):8861. doi: 10.3390/s22228861.
4
High-efficiency high-voltage class F amplifier for high-frequency wireless ultrasound systems.
PLoS One. 2021 Mar 29;16(3):e0249034. doi: 10.1371/journal.pone.0249034. eCollection 2021.
6
Wireless Ultrasound Surgical System with Enhanced Power and Amplitude Performances.
Sensors (Basel). 2020 Jul 27;20(15):4165. doi: 10.3390/s20154165.
7
Wide Bandwidth Class-S Power Amplifiers for Ultrasonic Devices.
Sensors (Basel). 2020 Jan 4;20(1):290. doi: 10.3390/s20010290.

本文引用的文献

1
Contrast enhancement and robustness improvement of adaptive ultrasound imaging using forward-backward minimum variance beamforming.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Apr;58(4):858-67. doi: 10.1109/TUFFC.2011.1880.
2
Eigenspace-based minimum variance beamforming applied to medical ultrasound imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Nov;57(11):2381-90. doi: 10.1109/TUFFC.2010.1706.
3
Anechoic sphere phantoms for estimating 3-D resolution of very-high-frequency ultrasound scanners.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Oct;57(10):2284-92. doi: 10.1109/TUFFC.2010.1689.
4
Sidelobe suppression in ultrasound imaging using dual apodization with cross-correlation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Oct;55(10):2198-210. doi: 10.1109/TUFFC.919.
5
Capon beamforming in medical ultrasound imaging with focused beams.
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Mar;55(3):619-28. doi: 10.1109/TUFFC.2008.686.
6
Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39(2):262-7. doi: 10.1109/58.139123.
7
A new approach to calculate the field radiated from arbitrarily structured transducer arrays.
IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(2):422-40. doi: 10.1109/58.753032.
8
Adaptive beamforming applied to medical ultrasound imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Aug;54(8):1606-13.
9
Optimal apodization design for medical ultrasound using constrained least squares part II: simulation results.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Feb;54(2):343-58. doi: 10.1109/tuffc.2007.248.
10
Optimal apodization design for medical ultrasound using constrained least squares part I: theory.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Feb;54(2):332-42. doi: 10.1109/tuffc.2007.247.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验