Wunderle Thomas, Eriksson David, Peiker Christiane, Schmidt Kerstin E
Max Planck Institute for Brain Research, 60528 Frankfurt, Germany, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany, and
Max Planck Institute for Brain Research, 60528 Frankfurt, Germany, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany, and.
J Neurosci. 2015 May 20;35(20):7682-94. doi: 10.1523/JNEUROSCI.4154-14.2015.
Neurons in the cerebral cortex are constantly integrating different types of inputs. Dependent on their origin, these inputs can be modulatory in many ways and, for example, change the neuron's responsiveness, sensitivity, or selectivity. To investigate the modulatory role of lateral input from the same level of cortical hierarchy, we recorded in the primary visual cortex of cats while controlling synaptic input from the corresponding contralateral hemisphere by reversible deactivation. Most neurons showed a pronounced decrease in their response to a visual stimulus of different contrasts and orientations. This indicates that the lateral network acts via an unspecific gain-setting mechanism, scaling the output of a neuron. However, the interhemispheric input also changed the contrast sensitivity of many neurons, thereby acting on the input. Such a contrast gain mechanism has important implications because it extends the role of the lateral network from pure response amplification to the modulation of a specific feature. Interestingly, for many neurons, we found a mixture of input and output gain modulation. Based on these findings and the known physiology of callosal connections in the visual system, we developed a simple model of lateral interhemispheric interactions. We conclude that the lateral network can act directly on its target, leading to a sensitivity change of a specific feature, while at the same time it also can act indirectly, leading to an unspecific gain setting. The relative contribution of these direct and indirect network effects determines the outcome for a particular neuron.
大脑皮层中的神经元不断整合不同类型的输入。根据其来源,这些输入可以通过多种方式进行调节,例如,改变神经元的反应性、敏感性或选择性。为了研究来自皮层层次结构同一水平的侧向输入的调节作用,我们在猫的初级视觉皮层进行记录,同时通过可逆失活来控制来自对侧半球的突触输入。大多数神经元对不同对比度和方向的视觉刺激的反应明显降低。这表明侧向网络通过一种非特异性的增益设置机制起作用,缩放神经元的输出。然而,半球间输入也改变了许多神经元的对比度敏感性,从而作用于输入。这种对比度增益机制具有重要意义,因为它将侧向网络的作用从单纯的反应放大扩展到对特定特征的调制。有趣的是,对于许多神经元,我们发现了输入增益调制和输出增益调制的混合。基于这些发现以及视觉系统中胼胝体连接的已知生理学,我们开发了一个侧向半球间相互作用的简单模型。我们得出结论,侧向网络可以直接作用于其目标,导致特定特征的敏感性变化,同时它也可以间接作用,导致非特异性的增益设置。这些直接和间接网络效应的相对贡献决定了特定神经元的结果。