Mifflin Steve, Cunningham J Thomas, Toney Glenn M
Department of Integrative Physiology and Anatomy, Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; and
Department of Integrative Physiology and Anatomy, Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; and.
J Appl Physiol (1985). 2015 Dec 15;119(12):1441-8. doi: 10.1152/japplphysiol.00198.2015. Epub 2015 May 21.
Sleep apnea (SA) leads to metabolic abnormalities and cardiovascular dysfunction. Rodent models of nocturnal intermittent hypoxia (IH) are used to mimic arterial hypoxemias that occur during SA. This mini-review focuses on our work examining central nervous system (CNS) mechanisms whereby nocturnal IH results in increased sympathetic nerve discharge (SND) and hypertension (HTN) that persist throughout the 24-h diurnal period. Within the first 1-2 days of IH, arterial pressure (AP) increases even during non-IH periods of the day. Exposure to IH for 7 days biases nucleus tractus solitarius (NTS) neurons receiving arterial chemoreceptor inputs toward increased discharge, providing a substrate for persistent activation of sympathetic outflow. IH HTN is blunted by manipulations that reduce angiotensin II (ANG II) signaling within the forebrain lamina terminalis suggesting that central ANG II supports persistent IH HTN. Inhibition of the hypothalamic paraventricular nucleus (PVN) reduces ongoing SND and acutely lowers AP in IH-conditioned animals. These findings support a role for the PVN, which integrates information ascending from NTS and descending from the lamina terminalis, in sustaining IH HTN. In summary, our findings indicate that IH rapidly and persistently activates a central circuit that includes the NTS, forebrain lamina terminalis, and the PVN. Our working model holds that NTS neuromodulation increases transmission of arterial chemoreceptor inputs, increasing SND via connections with PVN and rostral ventrolateral medulla. Increased circulating ANG II sensed by the lamina terminalis generates yet another excitatory drive to PVN. Together with adaptations intrinsic to the PVN, these responses to IH support rapid onset neurogenic HTN.
睡眠呼吸暂停(SA)会导致代谢异常和心血管功能障碍。夜间间歇性低氧(IH)的啮齿动物模型用于模拟SA期间发生的动脉血氧不足。本综述聚焦于我们的研究工作,该研究探讨了中枢神经系统(CNS)机制,即夜间IH如何导致交感神经放电(SND)增加以及高血压(HTN),且这种情况在24小时的昼夜周期中持续存在。在IH的最初1 - 2天内,即使在白天的非IH期间,动脉压(AP)也会升高。暴露于IH 7天会使接受动脉化学感受器输入的孤束核(NTS)神经元的放电倾向于增加,为交感神经输出的持续激活提供了基础。通过减少前脑终板内血管紧张素II(ANG II)信号传导的操作可减轻IH诱导的高血压,这表明中枢ANG II支持持续性IH高血压。抑制下丘脑室旁核(PVN)可减少IH条件下动物持续的SND并使AP急性降低。这些发现支持了PVN在维持IH高血压中的作用,PVN整合了从NTS上行和从终板下行的信息。总之,我们的研究结果表明,IH迅速且持续地激活了一个包括NTS、前脑终板和PVN的中枢回路。我们的工作模型认为,NTS神经调节增加了动脉化学感受器输入的传递,通过与PVN和延髓头端腹外侧的连接增加了SND。终板感知到的循环ANG II增加会对PVN产生另一种兴奋性驱动。与PVN自身的适应性变化一起,这些对IH的反应支持了快速发作的神经源性高血压。